Combining legacy data from heterogeneous crop trials to identify genotype by environment interactions using model-based recursive partitioning

cg.authorship.typesCGIAR and advanced research instituteen
cg.contributor.affiliationWageningen University & Researchen
cg.contributor.affiliationBioversity Internationalen
cg.creator.identifierDavid Brown: 0000-0003-2859-1618
cg.creator.identifiersebastien carpentier: 0000-0002-7389-6405
cg.creator.identifierLewis Machida: 0000-0002-0012-3997
cg.creator.identifierJacob van Etten: 0000-0001-7554-2558
cg.identifier.urlhttps://scisoc.confex.com/scisoc/2021am/meetingapp.cgi/Paper/137905en
cg.subject.alliancebiovciatAGRICULTUREen
cg.subject.alliancebiovciatBEANSen
cg.subject.alliancebiovciatCLIMATE CHANGE ADAPTATIONen
cg.subject.alliancebiovciatCROP PRODUCTIONen
cg.subject.impactAreaClimate adaptation and mitigation
cg.subject.sdgSDG 12 - Responsible consumption and productionen
dc.contributor.authorBrown, Daviden
dc.contributor.authorCarpentier, Sebastien C.en
dc.contributor.authorBruin, Sytze deen
dc.contributor.authorSousa, Kauê deen
dc.contributor.authorMachida, Lewisen
dc.contributor.authorEtten, Jacob vanen
dc.date.accessioned2022-01-20T13:45:12Zen
dc.date.available2022-01-20T13:45:12Zen
dc.identifier.urihttps://hdl.handle.net/10568/117614
dc.titleCombining legacy data from heterogeneous crop trials to identify genotype by environment interactions using model-based recursive partitioningen
dcterms.abstractCrop variety trials are important to generate insights on variety environmental adaptation, but this requires that varieties should be tested in a wide range of environments to consider the complexity of genotype by environment interactions. Given the substantial costs of collecting trial data, agricultural science needs to maximize the insights extracted from existing data. An alternative is to combine data from different trials performed in different environments using a data synthesis approach. Analyzing aggregated data from different trials could be challenging as datasets are often heterogeneous. Previous research has shown that ranking-based methods can deal with heterogeneous data from different trials to gain insights in average performance of genotypes, but not in responses to different environmental conditions. We show that such insights can be obtained from heterogeneous legacy field trial data by means of model-based recursive partitioning, using climatic covariates from open access databases. We applied this strategy to analyze the reaction of different banana cultivars to black leaf streak disease across several environments. This data-driven approach allowed to integrate heterogeneous datasets, which differ in measurements scales, experimental design, and testing environments. In our preliminary results, we found that cultivar reaction to black leaf streak disease is driven by both genotypic and climatic factors. The main agroclimatic variables identified by our model are the diurnal temperature range (DTR) and maximum length of consecutive days with rain >= 1 mm (MLWS). We show the potential of this method, which allows to gain cumulative insights in genotype by environment interactions as more trial data becomes available.en
dcterms.accessRightsOpen Access
dcterms.audienceScientistsen
dcterms.bibliographicCitationBrown, D.; Carpentier, S.; de Bruin, S.; de Sousa, K.; Machida, L.; van Etten, J. (2021) Combining legacy data from heterogeneous crop trials to identify genotype by environment interactions using model-based recursive partitioning [Abstract]. Presented at ASA/CSSA/SSSA International Annual Meeting. Salt Lake City, UT., 7-10 November 2021.en
dcterms.extent1 p.en
dcterms.issued2021-11-07
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.subjectvariety trialsen
dcterms.subjectenvironmental factorsen
dcterms.subjectgenotype environment interactionen
dcterms.subjectensayos de variedadesen
dcterms.subjectinteracción genotipo ambienteen
dcterms.subjectfactores ambientalesen
dcterms.typePoster

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CSSAM_2021_dbrown_et_al.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: