Regional monitoring of Fall Armyworm (FAW) using early warning systems

cg.contributor.affiliationUniversity of Barcelonaen
cg.contributor.affiliationAGROTECNIOen
cg.contributor.affiliationInternational Maize and Wheat Improvement Centeren
cg.contributor.affiliationLancaster Universityen
cg.contributor.affiliationPenn State Universityen
cg.contributor.affiliationMoi Universityen
cg.contributor.affiliationGoogleen
cg.contributor.donorFood and Agriculture of United Nationsen
cg.contributor.donorCooperation in Science and Technologyen
cg.contributor.donorCGIAR Trust Funden
cg.contributor.initiativeAccelerated Breedingen
cg.coverage.regionAfricaen
cg.creator.identifierMaria Luisa Buchaillot: 0000-0003-4668-5458en
cg.creator.identifierJill Cairns: 0000-0002-2735-3485en
cg.creator.identifierEsnath Tatenda Hamadziripi: 0000-0001-6929-0083en
cg.creator.identifierJose Luis Araus: 0000-0002-8866-2388en
cg.creator.identifierShawn Kefauver: 0000-0002-1687-1965en
cg.howPublishedFormally Publisheden
cg.identifier.doihttps://doi.org/10.3390/rs14195003en
cg.isijournalISI Journalen
cg.issn2072-4292en
cg.issue19en
cg.journalRemote Sensingen
cg.placeBasel, Switzerlanden
cg.reviewStatusPeer Reviewen
cg.subject.actionAreaGenetic Innovationen
cg.subject.impactAreaNutrition, health and food securityen
cg.volume14en
dc.contributor.authorBuchaillot, Maria Luisaen
dc.contributor.authorCairns, Jill E.en
dc.contributor.authorHamadziripi, Esnathen
dc.contributor.authorWilson, Kennethen
dc.contributor.authorHughes, Daviden
dc.contributor.authorChelal, Johnen
dc.contributor.authorMcCloskey, Peteren
dc.contributor.authorKehs, Annalyseen
dc.contributor.authorClinton, Nicholasen
dc.contributor.authorAraus, José Luisen
dc.contributor.authorKefauver, Shawn C.en
dc.date.accessioned2024-05-21T14:56:13Zen
dc.date.available2024-05-21T14:56:13Zen
dc.identifier.urihttps://hdl.handle.net/10568/141976
dc.titleRegional monitoring of Fall Armyworm (FAW) using early warning systemsen
dcterms.abstractThe second United Nations Sustainable Development Goal (SDG2), zero hunger, aims to improve the productivity, food security, nutrition, and sustainability of small-scale farmers. The fall armyworm (FAW, Spodoptera frugiperda) has been devasting to smallholder farmer food security since it spread to sub-Saharan Africa in 2016, who have suffered massive crop losses, particularly maize, an important staple for basic sustenance. Since the FAW mainly devours green leaf biomass during the maize vegetative growth stage, the implementation of remote sensing technologies offers opportunities for monitoring the FAW. Here, we developed and tested a Sentinel 2 a+b satellite-based monitoring algorithm based on optimized first-derivative NDVI time series analysis using Google Earth Engine. For validation, we first employed the FAO Fall Armyworm Monitoring and Early Warning System (FAMEWS) mobile app data from Kenya, and then subsequently conducted field validation campaigns in Zimbabwe, Kenya, and Tanzania. Additionally, we directly observed loss of green biomass during maize vegetative growth stages caused by the FAW, confirming the observed signals of loss of the leaf area index (LAI) and the total green biomass (via the NDVI). Preliminary analyses suggested that satellite monitoring of small-scale farmer fields at the regional level may be possible with an NDVI first-derivative time series anomaly analysis using ESA Sentinel 2 a+b (R2 = 0.81). Commercial nanosatellite constellations, such as PlanetScope, were also explored, which may offer benefits from greater spatial resolution and return interval frequency. Due to other confounding factors, such as clouds, intercropping, weeds, abiotic stresses, or even other biotic pests (e.g., locusts), validation results were mixed. Still, maize biomass anomaly detection for monitoring the FAW using satellite data could help confirm the presence of the FAW with the help of expanded field-based monitoring through the FAO FAMEWS app.en
dcterms.accessRightsOpen Accessen
dcterms.available2022-10en
dcterms.bibliographicCitationBuchaillot, M. L., Cairns, J. E., Hamadziripi, E., Wilson, K., Hughes, D., Chelal, J., McCloskey, P., Kehs, A., Clinton, N., Araus, J. L., & Kefauver, S. C. (2022). Regional monitoring of Fall Armyworm (FAW) using early warning systems. Remote Sensing, 14(19), 5003. https://doi.org/10.3390/rs14195003en
dcterms.extent5003en
dcterms.issued2022-07en
dcterms.languageenen
dcterms.licenseCC-BY-4.0en
dcterms.publisherMDPIen
dcterms.subjectbiomassen
dcterms.subjectearthen
dcterms.subjectenginesen
dcterms.subjectfood supplyen
dcterms.subjectmonitoringen
dcterms.subjectplanningen
dcterms.subjectsatellitesen
dcterms.subjectsustainable developmenten
dcterms.subjecttime series analysisen
dcterms.subjectfall armywormsen
dcterms.subjectmaizeen
dcterms.subjectremote sensingen
dcterms.subjectspodopteraen
dcterms.subjectsustainable development goalsen
dcterms.subjectspodoptera frugiperdaen
dcterms.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
65710.pdf
Size:
4.35 MB
Format:
Adobe Portable Document Format
Description:
https://hdl.handle.net/10883/22271

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: