Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
cg.authorship.types | CGIAR and advanced research institute | en_US |
cg.contributor.affiliation | International Rice Research Institute | en_US |
cg.contributor.affiliation | Max Planck Institute of Molecular Plant Physiology | en_US |
cg.contributor.affiliation | University of California | en_US |
cg.contributor.donor | US Foundation for Food and Agriculture Research | en_US |
cg.contributor.donor | European Regional Development Fund | en_US |
cg.contributor.donor | Department of Agriculture and Farmers Welfare, Government of India | en_US |
cg.contributor.donor | CGIAR Trust Fund | en_US |
cg.contributor.initiative | Accelerated Breeding | en_US |
cg.coverage.region | Africa | en_US |
cg.coverage.region | Asia | en_US |
cg.coverage.region | Americas | en_US |
cg.coverage.region | Australia and New Zealand | en_US |
cg.coverage.region | Caribbean | en_US |
cg.coverage.region | Europe | en_US |
cg.creator.identifier | Saurabh Badoni: 0000-0001-6969-5662 | en_US |
cg.creator.identifier | Sung-Ryul Kim: 0000-0003-1223-2442 | en_US |
cg.creator.identifier | Rhowell Jr. Tiozon: 0000-0002-2177-8730 | en_US |
cg.creator.identifier | Reuben James Buenafe: 0000-0002-0023-3678 | en_US |
cg.creator.identifier | Inez Slamet-Loedin: 0000-0001-9145-3571 | en_US |
cg.creator.identifier | Nese Sreenivasulu: 0000-0002-3998-038X | en_US |
cg.howPublished | Formally Published | en_US |
cg.identifier.doi | https://doi.org/10.1073/pnas.2410598121 | en_US |
cg.isijournal | ISI Journal | en_US |
cg.issn | 0027-8424 | en_US |
cg.issue | 36 | en_US |
cg.journal | Proceedings of the National Academy of Sciences of the United States of America | en_US |
cg.reviewStatus | Peer Review | en_US |
cg.subject.actionArea | Genetic Innovation | en_US |
cg.subject.impactArea | Nutrition, health and food security | en_US |
cg.volume | 121 | en_US |
dc.contributor.author | Badoni, Saurabh | en_US |
dc.contributor.author | Pasion-Uy, Erstelle A. | en_US |
dc.contributor.author | Kor, Sakshi | en_US |
dc.contributor.author | Kim, Sung-Ryul | en_US |
dc.contributor.author | Tiozon, Rhowell N. | en_US |
dc.contributor.author | Misra, Gopal | en_US |
dc.contributor.author | Buenafe, Reuben James Q. | en_US |
dc.contributor.author | Labarga, Luster May | en_US |
dc.contributor.author | Ramos-Castrosanto, Ana Rose | en_US |
dc.contributor.author | Pratap, Vipin | en_US |
dc.contributor.author | Slamet-Loedin, Inez | en_US |
dc.contributor.author | Steimker, Julia von | en_US |
dc.contributor.author | Alseekh, Saleh | en_US |
dc.contributor.author | Kohli, Ajay | en_US |
dc.contributor.author | Khush, Gurudev S. | en_US |
dc.contributor.author | Sreenivasulu, Nese | en_US |
dc.date.accessioned | 2024-12-20T15:56:31Z | en_US |
dc.date.available | 2024-12-20T15:56:31Z | en_US |
dc.identifier.uri | https://hdl.handle.net/10568/168150 | en_US |
dc.title | Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content | en_US |
dcterms.abstract | To counter the rising incidence of diabetes and to meet the daily protein needs, we created low glycemic index (GI) rice varieties with protein content (PC) surpassing 14%. In the development of recombinant inbred lines using Samba Mahsuri and IR36 amylose extender (IR36ae) as parental lines, we identified quantitative trait loci and genes associated with low GI, high amylose content (AC), and high PC. By integrating genetic techniques with classification models, this comprehensive approach identified candidate genes on chromosome 2 (qGI2.1/qAC2.1 spanning the region from 18.62 Mb to 19.95 Mb), exerting influence on low GI and high amylose. Notably, the phenotypic variant with high value was associated with the recessive allele of the starch branching enzyme 2b (sbeIIb). The genome-edited sbeIIb line confirmed low GI phenotype in milled rice grains. Further, combinations of alleles created by the highly significant SNPs from the targeted associations and epistatically interacting genes showed ultralow GI phenotypes with high amylose and high protein. Metabolomics analysis of rice with varying AC, PC, and GI revealed that the superior lines of high AC and PC, and low GI were preferentially enriched in glycolytic and amino acid metabolisms, whereas the inferior lines of low AC and PC and high GI were enriched with fatty acid metabolism. The high amylose high protein recombinant inbred line (HAHP_101) was enriched in essential amino acids like lysine. Such lines may be highly relevant for food product development to address diabetes and malnutrition. | en_US |
dcterms.accessRights | Open Access | en_US |
dcterms.audience | CGIAR | en_US |
dcterms.audience | Academics | en_US |
dcterms.audience | Donors | en_US |
dcterms.audience | Scientists | en_US |
dcterms.audience | General Public | en_US |
dcterms.available | 2024-08-27 | en_US |
dcterms.bibliographicCitation | Badoni, Saurabh, Erstelle A. Pasion-Uy, Sakshi Kor, Sung-Ryul Kim, Rhowell N. Tiozon Jr, Gopal Misra, Reuben James Q. Buenafe et al. "Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content." Proceedings of the National Academy of Sciences 121, no. 36 (2024): e2410598121. | en_US |
dcterms.extent | 9 p. | en_US |
dcterms.issued | 2024-08-27 | en_US |
dcterms.language | en | en_US |
dcterms.license | CC-BY-4.0 | en_US |
dcterms.publisher | Proceedings of the National Academy of Sciences | en_US |
dcterms.subject | inbred lines | en_US |
dcterms.subject | varieties | en_US |
dcterms.subject | starch | en_US |
dcterms.subject | proteins | en_US |
dcterms.subject | rice | en_US |
dcterms.subject | genomics | en_US |
dcterms.type | Journal Article | en_US |