Evolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystems

cg.contributor.affiliationUniversity of Californiaen_US
cg.contributor.affiliationNew York Universityen_US
cg.contributor.affiliationInternational Rice Research Instituteen_US
cg.contributor.affiliationNew York Genome Centeren_US
cg.contributor.affiliationNew York University Abu Dhabien_US
cg.identifier.doihttps://doi.org/10.1093/plcell/koab275en_US
cg.issn1040-4651en_US
cg.issue2en_US
cg.journalThe Plant Cellen_US
cg.volume34en_US
dc.contributor.authorGroen, Simon Cen_US
dc.contributor.authorJoly-Lopez, Zoéen_US
dc.contributor.authorPlatts, Adrian Een_US
dc.contributor.authorNatividad, Mignonen_US
dc.contributor.authorFresquez, Zoëen_US
dc.contributor.authorMauck, William Men_US
dc.contributor.authorQuintana, Marinell Ren_US
dc.contributor.authorCabral, Carlo Leo Uen_US
dc.contributor.authorTorres, Rolando Oen_US
dc.contributor.authorSatija, Rahulen_US
dc.contributor.authorPurugganan, Michael Den_US
dc.contributor.authorHenry, Ameliaen_US
dc.date.accessioned2024-12-19T12:53:31Zen_US
dc.date.available2024-12-19T12:53:31Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/164160en_US
dc.titleEvolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystemsen_US
dcterms.abstractRice (Oryza sativa) was domesticated around 10,000 years ago and has developed into a staple for half of humanity. The crop evolved and is currently grown in stably wet and intermittently dry agro-ecosystems, but patterns of adaptation to differences in water availability remain poorly understood. While previous field studies have evaluated plant developmental adaptations to water deficit, adaptive variation in functional and hydraulic components, particularly in relation to gene expression, has received less attention. Here, we take an evolutionary systems biology approach to characterize adaptive drought resistance traits across roots and shoots. We find that rice harbors heritable variation in molecular, physiological, and morphological traits that is linked to higher fitness under drought. We identify modules of co-expressed genes that are associated with adaptive drought avoidance and tolerance mechanisms. These expression modules showed evidence of polygenic adaptation in rice subgroups harboring accessions that evolved in drought-prone agro-ecosystems. Fitness-linked expression patterns allowed us to identify the drought-adaptive nature of optimizing photosynthesis and interactions with arbuscular mycorrhizal fungi. Taken together, our study provides an unprecedented, integrative view of rice adaptation to water-limited field conditions.en_US
dcterms.available2021-11-15en_US
dcterms.bibliographicCitationGroen, Simon C; Joly-Lopez, Zoé; Platts, Adrian E; Natividad, Mignon; Fresquez, Zoë; Mauck, William M; Quintana, Marinell R; Cabral, Carlo Leo U; Torres, Rolando O; Satija, Rahul; Purugganan, Michael D and Henry, Amelia. 2022. Evolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystems. The Plant Cell, (e-first copy); 25 pages.en_US
dcterms.extentpp. 759-783en_US
dcterms.issued2022-02-03en_US
dcterms.languageenen_US
dcterms.licenseCopyrighted; all rights reserveden_US
dcterms.publisherOxford University Pressen_US
dcterms.subjectcell biologyen_US
dcterms.subjectplant scienceen_US
dcterms.subjectdrought-prone agro-ecosystemen_US
dcterms.subjectphysiological tritsen_US
dcterms.subjectvarietiesen_US
dcterms.typeJournal Articleen_US

Files