Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software
cg.contributor.affiliation | International Maize and Wheat Improvement Center | en |
cg.contributor.affiliation | Colegio de Postgraduados, Mexico | en |
cg.contributor.affiliation | Aardevo B.V. | en |
cg.contributor.affiliation | Cornell University | en |
cg.contributor.affiliation | Louisiana State University | en |
cg.contributor.affiliation | University of California | en |
cg.contributor.affiliation | Universidad de Quintana Roo | en |
cg.contributor.affiliation | Research Center for Cereal and Industrial Crops | en |
cg.contributor.affiliation | Australian National University | en |
cg.contributor.affiliation | Norwegian University of Life Sciences | en |
cg.contributor.affiliation | Swedish University of Agricultural Sciences | en |
cg.contributor.affiliation | Universidad de Colima | en |
cg.contributor.affiliation | Universidad de Guadalajara | en |
cg.contributor.donor | CGIAR Trust Fund | en |
cg.contributor.initiative | Accelerated Breeding | |
cg.creator.identifier | Jose Crossa: 0000-0001-9429-5855 | en |
cg.creator.identifier | Johannes Martini: 0000-0003-0628-6794 | en |
cg.creator.identifier | Paolo Vitale: 0000-0002-4353-5828 | en |
cg.creator.identifier | Paulino Pérez-Rodríguez: 0000-0002-3202-1784 | en |
cg.creator.identifier | Germano Costa Neto: 0000-0003-1137-6786 | en |
cg.creator.identifier | Roberto Fritsche-Neto: 0000-0003-4310-0047 | en |
cg.creator.identifier | Daniel Runcie: 0000-0002-3008-9312 | en |
cg.creator.identifier | Jaime Cuevas: 0000-0002-0685-2867 | en |
cg.creator.identifier | Fernando HenriqueToledo: 0000-0003-0158-643X | en |
cg.creator.identifier | HuihuiLi: 0000-0002-9117-5011 | en |
cg.creator.identifier | Pasquale De Vita: 0000-0002-9573-0510 | en |
cg.creator.identifier | Guillermo Gerard: 0000-0002-9112-3588 | en |
cg.creator.identifier | Susanne Dreisigacker: 0000-0002-3546-5989 | en |
cg.creator.identifier | Leonardo Abdiel Crespo Herrera: 0000-0003-0506-4700 | en |
cg.creator.identifier | Carolina Saint Pierre: 0000-0003-1291-7468 | en |
cg.creator.identifier | Alison Bentley: 0000-0001-5519-4357 | en |
cg.creator.identifier | Morten Lillemo: 0000-0002-8594-8794 | en |
cg.creator.identifier | Rodomiro Ortiz: 0000-0002-1739-7206 | en |
cg.creator.identifier | Osval A. Montesinos-López: 0000-0002-3973-6547 | en |
cg.howPublished | Formally Published | en |
cg.identifier.doi | https://doi.org/10.1016/j.tplants.2024.12.009 | en |
cg.isijournal | ISI Journal | en |
cg.issn | 1360-1385 | en |
cg.issn | 1878-4372 | en |
cg.journal | Trends in Plant Science | en |
cg.reviewStatus | Peer Review | en |
dc.contributor.author | Crossa, José | en |
dc.contributor.author | Martini, Johannes W.R. | en |
dc.contributor.author | Vitale, Paolo | en |
dc.contributor.author | Perez-Rodriguez, Paulino | en |
dc.contributor.author | Costa-Neto, Germano | en |
dc.contributor.author | Fritsche-Neto, Roberto | en |
dc.contributor.author | Runcie, Daniel E. | en |
dc.contributor.author | Cuevas, Jaime | en |
dc.contributor.author | Toledo, Fernando H. | en |
dc.contributor.author | Huihui Li | en |
dc.contributor.author | De Vita, Pasquale | en |
dc.contributor.author | Gerard, Guillermo S. | en |
dc.contributor.author | Dreisigacker, Susanne | en |
dc.contributor.author | Crespo-Herrera, Leonardo A. | en |
dc.contributor.author | Saint Pierre, Carolina | en |
dc.contributor.author | Bentley, Alison R. | en |
dc.contributor.author | Lillemo, Morten | en |
dc.contributor.author | Ortiz, Rodomiro | en |
dc.contributor.author | Montesinos-Lopez, Osval A. | en |
dc.contributor.author | Montesinos-López, Abelardo | en |
dc.date.accessioned | 2025-03-25T15:01:38Z | en |
dc.date.available | 2025-03-25T15:01:38Z | en |
dc.identifier.uri | https://hdl.handle.net/10568/173853 | |
dc.title | Expanding genomic prediction in plant breeding: harnessing big data, machine learning, and advanced software | en |
dcterms.abstract | With growing evidence that genomic selection (GS) improves genetic gains in plant breeding, it is timely to review the key factors that improve its efficiency. In this feature review, we focus on the statistical machine learning (ML) methods and software that are democratizing GS methodology. We outline the principles of genomic-enabled prediction and discuss how statistical ML tools enhance GS efficiency with big data. Additionally, we examine various statistical ML tools developed in recent years for predicting traits across continuous, binary, categorical, and count phenotypes. We highlight the unique advantages of deep learning (DL) models used in genomic prediction (GP). Finally, we review software developed to democratize the use of GP models and recent data management tools that support the adoption of GS methodology. | en |
dcterms.accessRights | Open Access | |
dcterms.available | 2025-01-30 | en |
dcterms.bibliographicCitation | Crossa, J., Martini, J. W. R., Vitale, P., Pérez-Rodríguez, P., Costa-Neto, G., Fritsche-Neto, R., Runcie, D., Cuevas, J., Toledo, F., Li, H., De Vita, P., Gerard, G., Dreisigacker, S., Crespo-Herrera, L., Saint Pierre, C., Bentley, A., Lillemo, M., Ortiz, R., Montesinos-López, O. A., & Montesinos-López, A. (2025). Expanding genomic prediction in plant breeding: Harnessing big data, machine learning, and advanced software. Trends in Plant Science, S1360138524003455. https://doi.org/10.1016/j.tplants.2024.12.009 | en |
dcterms.hasVersion | https://hdl.handle.net/10883/35536 | en |
dcterms.issued | 2025 | en |
dcterms.language | en | |
dcterms.license | CC-BY-4.0 | |
dcterms.publisher | Elsevier | en |
dcterms.subject | models | en |
dcterms.subject | plant breeding | en |
dcterms.subject | genomics | en |
dcterms.subject | forecasting | en |
dcterms.subject | software development | en |
dcterms.subject | marker-assisted selection | en |
dcterms.subject | statistical methods | en |
dcterms.subject | machine learning | en |
dcterms.type | Journal Article |