Maize resistance to witchweed through changes in strigolactone biosynthesis
cg.authorship.types | CGIAR and developing country institute | en |
cg.authorship.types | CGIAR and advanced research institute | en |
cg.contributor.affiliation | University of Amsterdam | en |
cg.contributor.affiliation | Wageningen University & Research | en |
cg.contributor.affiliation | University of Basel | en |
cg.contributor.affiliation | University of Florida | en |
cg.contributor.affiliation | ETH Zürich | en |
cg.contributor.affiliation | Syngenta Crop Protection | en |
cg.contributor.affiliation | Chinese Academy of Sciences | en |
cg.contributor.affiliation | International Maize and Wheat Improvement Center | en |
cg.contributor.affiliation | Palacký University | en |
cg.contributor.affiliation | São Paulo State University | en |
cg.contributor.affiliation | University of California | en |
cg.contributor.affiliation | International Institute of Tropical Agriculture | en |
cg.contributor.donor | National Science Foundation, United States | en |
cg.contributor.donor | CGIAR Trust Fund | en |
cg.contributor.donor | European Research Council | en |
cg.contributor.donor | China Scholarship Council | en |
cg.contributor.donor | Marie Skłodowska-Curie actions | en |
cg.contributor.donor | Dutch Research Council | en |
cg.contributor.initiative | Plant Health | |
cg.contributor.initiative | Accelerated Breeding | |
cg.coverage.region | Africa | |
cg.creator.identifier | Hugo De Groote: 0000-0002-5081-0189 | |
cg.howPublished | Formally Published | en |
cg.identifier.doi | https://doi.org/10.1126/science.abq4775 | en |
cg.isijournal | ISI Journal | en |
cg.issn | 1095-9203 | en |
cg.issue | 6627 | en |
cg.journal | Science | en |
cg.reviewStatus | Peer Review | en |
cg.subject.actionArea | Resilient Agrifood Systems | |
cg.subject.impactArea | Nutrition, health and food security | |
cg.volume | 379 | en |
dc.contributor.author | Changsheng Li | en |
dc.contributor.author | Dong, Lemeng | en |
dc.contributor.author | Durairaj, Janan | en |
dc.contributor.author | Guan, Jiahn-Chou | en |
dc.contributor.author | Yoshimura, Masahiko | en |
dc.contributor.author | Quinodoz, Pierre | en |
dc.contributor.author | Horber, Robin | en |
dc.contributor.author | Gaus, Katharina | en |
dc.contributor.author | Jing Li | en |
dc.contributor.author | Setotaw, Yohannes Besufekad | en |
dc.contributor.author | Qi, Jinfeng | en |
dc.contributor.author | Groote, Hugo de | en |
dc.contributor.author | Wang, Yanting | en |
dc.contributor.author | Thiombiano, Benjamin | en |
dc.contributor.author | Floková, Kristýna | en |
dc.contributor.author | Walmsley, Aimee | en |
dc.contributor.author | Charnikhova, T. | en |
dc.contributor.author | Chojnacka, A. | en |
dc.contributor.author | Correia de Lemos, Samara Mireza | en |
dc.contributor.author | Ding, Yezhang | en |
dc.contributor.author | Skibbe, David | en |
dc.contributor.author | Hermann, Katrin | en |
dc.contributor.author | Screpanti, Claudio | en |
dc.contributor.author | Mesmaeker, A. de | en |
dc.contributor.author | Schmelz, Eric | en |
dc.contributor.author | Menkir, Abebe | en |
dc.contributor.author | Medema, Marnix H. | en |
dc.contributor.author | Dijk, Aalt-Jan van | en |
dc.contributor.author | Wu, Jianqiang | en |
dc.contributor.author | Koch, K.E | en |
dc.contributor.author | Bouwmeester, Harro | en |
dc.date.accessioned | 2023-01-25T20:18:15Z | en |
dc.date.available | 2023-01-25T20:18:15Z | en |
dc.identifier.uri | https://hdl.handle.net/10568/128244 | |
dc.title | Maize resistance to witchweed through changes in strigolactone biosynthesis | en |
dcterms.abstract | Maize (Zea mays) is a major staple crop in Africa, where its yield and the livelihood of millions are compromised by the parasitic witchweed Striga. Germination of Striga is induced by strigolactones exuded from maize roots into the rhizosphere. In a maize germplasm collection, we identified two strigolactones, zealactol and zealactonoic acid, which stimulate less Striga germination than the major maize strigolactone, zealactone. We then showed that a single cytochrome P450, ZmCYP706C37, catalyzes a series of oxidative steps in the maize-strigolactone biosynthetic pathway. Reduction in activity of this enzyme and two others involved in the pathway, ZmMAX1b and ZmCLAMT1, can change strigolactone composition and reduce Striga germination and infection. These results offer prospects for breeding Striga-resistant maize. | en |
dcterms.accessRights | Open Access | |
dcterms.audience | Scientists | en |
dcterms.bibliographicCitation | Li, C., Dong, L., Durairaj, J., Guan, J.-C., Yoshimura, M., Quinodoz, P., Horber, R., Gaus, K., Li, J., Setotaw, Y. B., Qi, J., De Groote, H., Wang, Y., Thiombiano, B., Floková, K., Walmsley, A., Char-nikhova, T. V., Chojnacka, A., Correia de Lemos, S. et al. 2023. Maize resistance to witchweed through changes in strigolactone biosynthesis. Science 379(6627):94–99. | en |
dcterms.extent | p. 94-99 | en |
dcterms.issued | 2023-01-06 | |
dcterms.language | en | |
dcterms.license | Other | |
dcterms.publisher | American Association for the Advancement of Science | en |
dcterms.subject | maize | en |
dcterms.subject | strigolactones | en |
dcterms.subject | biosynthesis | en |
dcterms.subject | resistance varieties | en |
dcterms.type | Journal Article |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: