Machine learning algorithms translate big data into predictive breeding accuracy
Date Issued
Date Online
Language
Type
Review Status
Access Rights
Metadata
Full item pageCitation
Crossa, J., Montesinos-Lopez, O. A., Costa-Neto, G., Vitale, P., Martini, J. W. R., Runcie, D., Fritsche-Neto, R., Montesinos-Lopez, A., Pérez-Rodríguez, P., Gerard, G., Dreisigacker, S., Crespo-Herrera, L., Pierre, C.S., Lillemo, M., Cuevas, J., Bentley, A., & Ortiz, R. (2024). Machine learning algorithms translate big data into predictive breeding accuracy. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2024.09.011
Permanent link to cite or share this item
External link to download this item
Abstract/Description
Statistical machine learning (ML) extracts patterns from extensive genomic, phenotypic, and environmental data. ML algorithms automatically identify relevant features and use cross-validation to ensure robust models and improve prediction reliability in new lines. Furthermore, ML analyses of genotype-by-environment (G×E) interactions can offer insights into the genetic factors that affect performance in specific environments. By leveraging historical breeding data, ML streamlines strategies and automates analyses to reveal genomic patterns. In this review we examine the transformative impact of big data, including multi-trait genomics, phenomics, and environmental covariables, on genomic-enabled prediction in plant breeding. We discuss how big data and ML are revolutionizing the field by enhancing prediction accuracy, deepening our understanding of G×E interactions, and optimizing breeding strategies through the analysis of extensive and diverse datasets.
Author ORCID identifiers
Osval A. Montesinos-López https://orcid.org/0000-0002-3973-6547
Germano Costa Neto https://orcid.org/0000-0003-1137-6786
Paolo Vitale https://orcid.org/0000-0002-4353-5828
Johannes Martini https://orcid.org/0000-0003-0628-6794
Daniel Runcie https://orcid.org/0000-0002-3008-9312
Roberto Fritsche-Neto https://orcid.org/0000-0003-4310-0047
Paulino Pérez-Rodríguez https://orcid.org/0000-0002-3202-1784
Guillermo Gerard https://orcid.org/0000-0002-9112-3588
Susanne Dreisigacker https://orcid.org/0000-0002-3546-5989
Leonardo Abdiel Crespo Herrera https://orcid.org/0000-0003-0506-4700
Carolina Saint Pierre https://orcid.org/0000-0003-1291-7468
Morten Lillemo https://orcid.org/0000-0002-8594-8794
Jaime Cuevas https://orcid.org/0000-0002-0685-2867
Alison Bentley https://orcid.org/0000-0001-5519-4357
Rodomiro Ortiz https://orcid.org/0000-0002-1739-7206