Discriminating Robusta coffee (Coffea canephora) cropping systems using leaf-level hyperspectral data
cg.authorship.types | CGIAR and developing country institute | en |
cg.authorship.types | CGIAR and advanced research institute | en |
cg.contributor.affiliation | International Centre of Insect Physiology and Ecology | en |
cg.contributor.affiliation | University of Kwazulu Natal | en |
cg.contributor.affiliation | International Potato Center | en |
cg.contributor.affiliation | Centre de Coopération Internationale en Recherche Agronomique pour le Développement | en |
cg.contributor.donor | Deutscher Akademischer Austauschdienst | en |
cg.contributor.donor | European Union | en |
cg.contributor.donor | Norwegian Agency for Development Cooperation | en |
cg.contributor.donor | Australian Centre for International Agricultural Research | en |
cg.contributor.donor | Federal Democratic Republic of Ethiopia | en |
cg.contributor.donor | Government of the Republic of Kenya | en |
cg.contributor.donor | Centre de Coopération Internationale en Recherche Agronomique pour le Développement | en |
cg.coverage.country | Uganda | |
cg.coverage.iso3166-alpha2 | UG | |
cg.coverage.region | Africa | |
cg.creator.identifier | Bester Tawona Mudereri: 0000-0001-9407-7890 | en |
cg.creator.identifier | Elfatih Mohamed Abdel-Rahman: 0000-0002-5694-0291 | en |
cg.creator.identifier | Onisimo Mutanga: 0000-0002-7358-8111 | en |
cg.creator.identifier | Natacha Motisi: 0000-0001-8313-6728 | en |
cg.creator.identifier | Fabrice Pinard: 0009-0002-9577-9231 | en |
cg.creator.identifier | Henri TONNANG: 0000-0002-9424-9186 | en |
cg.howPublished | Formally Published | en |
cg.identifier.doi | https://doi.org/10.1117/1.jrs.18.044503 | en |
cg.isijournal | ISI Journal | en |
cg.issn | 1931-3195 | en |
cg.issue | 4 | en |
cg.journal | Journal of Applied Remote Sensing | en |
cg.reviewStatus | Peer Review | en |
cg.subject.actionArea | Resilient Agrifood Systems | |
cg.subject.actionArea | Systems Transformation | |
cg.subject.cip | BIGDATA | en |
cg.subject.cip | CLIMATE-SMART AGRICULTURE | en |
cg.subject.cip | CROP AND SYSTEMS SCIENCES CSS | en |
cg.subject.cip | FOOD SYSTEMS | en |
cg.subject.cip | CLIMATE CHANGE | en |
cg.subject.impactArea | Climate adaptation and mitigation | |
cg.subject.impactArea | Environmental health and biodiversity | |
cg.subject.sdg | SDG 2 - Zero hunger | en |
cg.subject.sdg | SDG 12 - Responsible consumption and production | en |
cg.subject.sdg | SDG 13 - Climate action | en |
cg.subject.sdg | SDG 15 - Life on land | en |
cg.volume | 18 | en |
dc.contributor.author | Kebede, G. | en |
dc.contributor.author | Mudereri, B.T. | en |
dc.contributor.author | Abdel-Rahman, E.M. | en |
dc.contributor.author | Mutanga, O. | en |
dc.contributor.author | Landmann, T. | en |
dc.contributor.author | Odindi, J. | en |
dc.contributor.author | Motisi, N. | en |
dc.contributor.author | Pinard, F. | en |
dc.contributor.author | Tonnang, H.E.Z. | en |
dc.date.accessioned | 2025-02-19T20:13:57Z | en |
dc.date.available | 2025-02-19T20:13:57Z | en |
dc.identifier.uri | https://hdl.handle.net/10568/173235 | |
dc.title | Discriminating Robusta coffee (Coffea canephora) cropping systems using leaf-level hyperspectral data | en |
dcterms.abstract | The coffee agro-ecosystems are increasingly being transformed into small-scale coffee-growing agricultural systems. In this context, the challenge of accurately classifying coffee cropping systems (CSs) becomes more significant, particularly in regions such as Uganda where dense vegetation and diverse topography complicate traditional land surveys. We harness the capabilities of remote sensing to provide hyperspectral data crucial for distinguishing between various coffee CSs and other land covers. Specifically, we focus on the spectral analysis of three types of Robusta coffee CSs—those integrating agroforestry, those combined with banana cultivation, and those in full sun exposure. Using in situ hyperspectral measurements captured by the FieldSpec 2™ spectroradiometer across the 325 to 1075 nm range of the electromagnetic spectrum, we aimed to (1) analyze the unique spectral properties and behaviors of these Robusta coffee CSs and (2) effectively discriminate among them using advanced hyperspectral datasets alongside the machine learning (ML) classification algorithms. The key to this process was the use of narrow spectral bands (NSBs) and various narrow-band vegetation indices (VIs), serving as predictor variables. A selection of critical variables (NSB = 9 and VIs = 8) was identified through the guided regularized random forest (RF) technique and then applied to four ML algorithms—RF, stochastic gradient boosting (GB), linear discriminant analysis, and support vector machine for classification experiments. The findings indicated high discrimination accuracy, with the RF and GB algorithms achieving overall accuracies of 93% and 90.5%, respectively, when using the selected VIs, and 87.3% (RF) and 83% (GB) when applying the chosen NBSs. These results underline the efficacy of integrating hyperspectral datasets and ML algorithms in reliably categorizing Robusta coffee CSs, a crucial step toward enhancing sustainable coffee cultivation practices. | en |
dcterms.accessRights | Limited Access | |
dcterms.audience | Academics | en |
dcterms.audience | CGIAR | en |
dcterms.audience | Development Practitioners | en |
dcterms.audience | Donors | en |
dcterms.audience | Extension | en |
dcterms.audience | Farmers | en |
dcterms.audience | General Public | en |
dcterms.audience | NGOs | en |
dcterms.audience | Policy Makers | en |
dcterms.audience | Scientists | en |
dcterms.available | 2024-10-04 | en |
dcterms.bibliographicCitation | Kebede, G.; Mudereri, B.T.; Abdel-Rahman, E.M.; Mutanga, O.; Landmann, T.; Odindi, J.; Motisi, N.; Pinard, F.; Tonnang, H.E.Z. 2024. Discriminating Robusta coffee (Coffea canephora) cropping systems using leaf-level hyperspectral data. Journal of Applied Remote Sensing. ISSN 1931-3195. 18(04). https://doi.org/10.1117/1.jrs.18.044503 | en |
dcterms.issued | 2025-02-11 | en |
dcterms.language | en | |
dcterms.license | Copyrighted; all rights reserved | |
dcterms.subject | machine learning | en |
dcterms.subject | agroforestry | en |
dcterms.subject | cropping systems | en |
dcterms.type | Journal Article |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: