New machine learning models that predict the performance of seed varieties in particular conditions
cg.contributor.crp | Big Data | |
cg.coverage.country | Mexico | |
cg.coverage.iso3166-alpha2 | MX | |
cg.coverage.region | Central America | |
cg.number | IN-1460 | en |
dc.contributor.author | CGIAR Platform for Big Data in Agriculture | en |
dc.date.accessioned | 2022-10-06T14:14:51Z | en |
dc.date.available | 2022-10-06T14:14:51Z | en |
dc.identifier.uri | https://hdl.handle.net/10568/122958 | |
dc.title | New machine learning models that predict the performance of seed varieties in particular conditions | en |
dcterms.abstract | Demonstrated a method for prediction of seed performance under different conditions to inform risk/productivity decision making in seed selection. | en |
dcterms.accessRights | Open Access | |
dcterms.bibliographicCitation | CGIAR Platform for Big Data in Agriculture. 2019. New machine learning models that predict the performance of seed varieties in particular conditions. Reported in Platform for Big Data in Agriculture Annual Report 2019. Innovations. | en |
dcterms.isPartOf | CRP Innovation | en |
dcterms.issued | 2019-12-31 | |
dcterms.language | en | |
dcterms.license | Other | |
dcterms.subject | models | en |
dcterms.subject | productivity | en |
dcterms.subject | varieties | en |
dcterms.subject | decision making | en |
dcterms.subject | seed | en |
dcterms.subject | development | en |
dcterms.subject | selection | en |
dcterms.subject | rural development | en |
dcterms.subject | learning | en |
dcterms.subject | risk | en |
dcterms.subject | systems | en |
dcterms.subject | agrifood systems | en |
dcterms.subject | machine learning | en |
dcterms.subject | prediction | en |
dcterms.subject | seed development | en |
dcterms.type | Report |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ProjectInnovationSummary-BigData-P1621-I1460.pdf
- Size:
- 78.32 KB
- Format:
- Adobe Portable Document Format
- Description:
- Report