Use of machine learning approaches for quantification of red spider mite (Acari: Tetranychidae) damage in Urochloa sp.

Share

Citation

Espitia-Buitrago P.; Cotes-Torres J.M.; Mating'i A.; Chidawanyika F.; Hernández L.M.; Cardoso J.; Jauregui R. (2023) Use of machine learning approaches for quantification of red spider mite (Acari: Tetranychidae) damage in Urochloa sp. Poster prepared for African Plant Breeders Association 2023 Conference - Leveraging Genetic Innovation for Resilient African Food Systems in the wake of Global Shocks. Benguerir, Morocco, 23-26 October 2023. Cali (Colombia): International Center for Tropical Agriculture. 1 p.

Permanent link to cite or share this item

External link to download this item

DOI

Abstract/Description

Author ORCID identifiers

Paula Espitia-Buitrago  
Luis M. Hernandez  
Juan Andrés Cardoso Arango  

Contributes to SDGs

SDG 1 - No poverty
SDG 2 - Zero hunger
SDG 3 - Good health and well-being
SDG 8 - Decent work and economic growth
SDG 12 - Responsible consumption and production
SDG 13 - Climate action
SDG 15 - Life on land
Countries
Investors/sponsors
CGIAR Action Areas
CGIAR Initiatives