A comprehensive analysis of machine learning and remote sensing techniques in studying climate hazards-induced crop yield variations
cg.contributor.affiliation | International Water Management Institute | en_US |
cg.coverage.region | Africa | en_US |
cg.coverage.region | Asia | en_US |
cg.creator.identifier | Salomon OBAHOUNDJE: 0000-0001-8093-5241 | en_US |
cg.creator.identifier | Seifu Tilahun: 0000-0002-5219-4527 | en_US |
cg.creator.identifier | Birhanu Zemadim: 0000-0002-3497-2364 | en_US |
cg.creator.identifier | Petra Schmitter: 0000-0002-3826-7224 | en_US |
cg.place | Geneva, Switzerland. | en_US |
dc.contributor.author | Obahoundje, Salomon | en_US |
dc.contributor.author | Tilahun, Seifu A. | en_US |
dc.contributor.author | Zemadim, Birhanu | en_US |
dc.contributor.author | Schmitter, Petra S. | en_US |
dc.date.accessioned | 2024-12-14T09:56:36Z | en_US |
dc.date.available | 2024-12-14T09:56:36Z | en_US |
dc.identifier.uri | https://hdl.handle.net/10568/163479 | en_US |
dc.title | A comprehensive analysis of machine learning and remote sensing techniques in studying climate hazards-induced crop yield variations | en_US |
dcterms.accessRights | Open Access | en_US |
dcterms.bibliographicCitation | Obahoundje, Salomon; Tilahun, Seifu A.; Zemadim, Birhanu; Schmitter, Petra. 2024. A comprehensive analysis of machine learning and remote sensing techniques in studying climate hazards-induced crop yield variations. Poster presented at the Drought Resilience +10 Conference, Geneva, Switzerland, 30 September – 02 October 2024. | en_US |
dcterms.issued | 2024-09-30 | en_US |
dcterms.language | en | en_US |
dcterms.license | CC-BY-4.0 | en_US |
dcterms.subject | analysis | en_US |
dcterms.subject | machine learning | en_US |
dcterms.subject | remote sensing | en_US |
dcterms.subject | techniques | en_US |
dcterms.subject | climate change | en_US |
dcterms.subject | hazards | en_US |
dcterms.subject | climate variability | en_US |
dcterms.subject | crop yield | en_US |
dcterms.subject | crop production | en_US |
dcterms.subject | drought | en_US |
dcterms.subject | indicators | en_US |
dcterms.subject | food security | en_US |
dcterms.subject | risk management | en_US |
dcterms.type | Poster | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- POSTER- A comprehensive analysis of machine learning and remote sensing techniques in studying climate hazards-induced crop yield variations.pdf
- Size:
- 5.01 MB
- Format:
- Adobe Portable Document Format
- Description:
- Download full Poster
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: