Dataset: Forage grasses in crop fields from ultra-high spatial resolution UAV-based imagery
cg.authorship.types | CGIAR single centre | en |
cg.contributor.initiative | Accelerated Breeding | |
cg.contributor.initiative | Sustainable Animal Productivity | |
cg.coverage.region | South America | |
cg.creator.identifier | Juan Andrés Cardoso Arango: 0000-0002-0252-4655 | en |
cg.creator.identifier | Rosa Noemi Jauregui: 0000-0002-1058-3735 | en |
cg.creator.identifier | Rodrigo Camelo: 0000-0003-0563-6123 | en |
cg.creator.identifier | Andres Felipe Ruiz-Hurtado: 0000-0003-1293-8736 | en |
cg.creator.identifier | Darwin Alexis Arrechea-Castillo: 0000-0002-2395-2181 | en |
cg.identifier.doi | https://doi.org/10.7910/dvn/dbgufw | en |
cg.reviewStatus | Internal Review | en |
cg.subject.alliancebiovciat | CROP PRODUCTION | en |
cg.subject.alliancebiovciat | HEALTH | en |
cg.subject.alliancebiovciat | NUTRITION | en |
cg.subject.impactArea | Climate adaptation and mitigation | |
cg.subject.impactArea | Environmental health and biodiversity | |
cg.subject.impactArea | Nutrition, health and food security | |
dc.contributor.author | Cardoso Arango, Juan Andres | en |
dc.contributor.author | Jauregui, Rosa Noemi | en |
dc.contributor.author | Camelo-Munevar, Rodrigo Andres | en |
dc.contributor.author | Ruiz-Hurtado, Andres Felipe | en |
dc.contributor.author | Arrechea-Castillo, Darwin Alexis | en |
dc.date.accessioned | 2025-05-02T00:58:46Z | en |
dc.date.available | 2025-05-02T00:58:46Z | en |
dc.identifier.uri | https://hdl.handle.net/10568/174405 | |
dc.title | Dataset: Forage grasses in crop fields from ultra-high spatial resolution UAV-based imagery | en |
dcterms.abstract | This dataset contains orthomosaics and individual Regions of Interest (ROIs) of forage grasses in crop fields from experimental trials of CIAT’s tropical forages breeding program; and annotations in Common Objects in Context (COCO) format derived from that data. The ROIs were manually annotated on UAV imagery and exported in common objects in context (COCO) format compatible with different machine learning models and architectures. 9,554 ROIs in the geospatial data and 12,365 annotations of forage grasses in COCO format. Methodology: The dataset was generated through a multi-step process beginning with data acquisition of forages crop fields via UAV flights (DJI Phantom 4 Multispectral drone) with RTK determining the geolocation. These images were processed in Agisoft Metashape to generate georeferenced orthomosaics as raster files. Manual annotation of forage grasses ROIs was performed in QGIS and the geospatial data for 8 different orthomosaics was later converted to COCO format using custom python scripting. To ensure compatibility witch COCO standards and optimize training efficiency, the large orthomosaics where clipped to the annotations’ extents with additional 1% spatial buffer and split into tiles with a maximum dimension close to 1024 pixels for the larger side and 25% overlap. | en |
dcterms.accessRights | Open Access | |
dcterms.bibliographicCitation | Cardoso Arango, J.A.; Jauregui, R.N.; Camelo-Munevar, R.A.; Ruiz-Hurtado, A.F.; Arrechea-Castillo, D.A. (2025) Dataset: Forage grasses in crop fields from ultra-high spatial resolution UAV-based imagery. https://doi.org/10.7910/DVN/DBGUFW | en |
dcterms.issued | 2025 | en |
dcterms.language | en | |
dcterms.license | CC-BY-NC-4.0 | |
dcterms.subject | machine learning | en |
dcterms.subject | unmanned aerial vehicles | en |
dcterms.subject | imagery | en |
dcterms.subject | feed crops | en |
dcterms.type | Dataset |