Data augmentation enhances plant-genomic-enabled predictions

cg.authorship.typesCGIAR and advanced research instituteen_US
cg.authorship.typesCGIAR and developing country instituteen_US
cg.authorship.typesCGIAR single centreen_US
cg.contributor.affiliationUniversidad de Colimaen_US
cg.contributor.affiliationInternational Maize and Wheat Improvement Centeren_US
cg.contributor.affiliationUniversidad de Guadalajaraen_US
cg.contributor.affiliationKing Saud Universityen_US
cg.contributor.affiliationLouisiana State Universityen_US
cg.contributor.affiliationColegio de Postgraduados, Mexicoen_US
cg.contributor.donorBill & Melinda Gates Foundationen_US
cg.contributor.donorUnited States Agency for International Developmenten_US
cg.contributor.donorNorwegian Research Councilen_US
cg.contributor.donorKing Saud Universityen_US
cg.contributor.donorCGIAR Trust Funden_US
cg.contributor.initiativeAccelerated Breedingen_US
cg.creator.identifierOsval A. Montesinos-López: 0000-0002-3973-6547en_US
cg.creator.identifierMario Alberto Solís Camacho: 0009-0004-7858-5173en_US
cg.creator.identifierLeonardo Abdiel Crespo Herrera: 0000-0003-0506-4700en_US
cg.creator.identifierCarolina Saint Pierre: 0000-0003-1291-7468en_US
cg.creator.identifierSofía Ramos-Pulido: 0000-0003-0101-4511en_US
cg.creator.identifierKHALID ALNOWIBET: 0000-0001-5760-0216en_US
cg.creator.identifierRoberto Fritsche-Neto: 0000-0003-4310-0047en_US
cg.creator.identifierGuillermo Gerard: 0000-0002-9112-3588en_US
cg.creator.identifierJose Crossa: 0000-0001-9429-5855en_US
cg.howPublishedFormally Publisheden_US
cg.identifier.doihttps://doi.org/10.3390/genes15030286en_US
cg.identifier.urlhttps://hdl.handle.net/10883/23127en_US
cg.isijournalISI Journalen_US
cg.issn2073-4425en_US
cg.issue3en_US
cg.journalGenesen_US
cg.reviewStatusPeer Reviewen_US
cg.subject.actionAreaGenetic Innovationen_US
cg.subject.impactAreaNutrition, health and food securityen_US
cg.volume15en_US
dc.contributor.authorMontesinos-Lopez, Osval A.en_US
dc.contributor.authorSolis-Camacho, Mario Albertoen_US
dc.contributor.authorCrespo Herrera, Leonardo A.en_US
dc.contributor.authorSaint Pierre, Carolinaen_US
dc.contributor.authorHuerta Prado, Gloria Isabelen_US
dc.contributor.authorRamos-Pulido, Sofiaen_US
dc.contributor.authorAl-Nowibet, Khaliden_US
dc.contributor.authorFritsche-Neto, Robertoen_US
dc.contributor.authorGerard, Guillermo S.en_US
dc.contributor.authorMontesinos-Lopez, Abelardoen_US
dc.contributor.authorCrossa, Joséen_US
dc.date.accessioned2024-11-15T14:51:00Zen_US
dc.date.available2024-11-15T14:51:00Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/159826en_US
dc.titleData augmentation enhances plant-genomic-enabled predictionsen_US
dcterms.abstractGenomic selection (GS) is revolutionizing plant breeding. However, its practical implementation is still challenging, since there are many factors that affect its accuracy. For this reason, this research explores data augmentation with the goal of improving its accuracy. Deep neural networks with data augmentation (DA) generate synthetic data from the original training set to increase the training set and to improve the prediction performance of any statistical or machine learning algorithm. There is much empirical evidence of their success in many computer vision applications. Due to this, DA was explored in the context of GS using 14 real datasets. We found empirical evidence that DA is a powerful tool to improve the prediction accuracy, since we improved the prediction accuracy of the top lines in the 14 datasets under study. On average, across datasets and traits, the gain in prediction performance of the DA approach regarding the Conventional method in the top 20% of lines in the testing set was 108.4% in terms of the NRMSE and 107.4% in terms of the MAAPE, but a worse performance was observed on the whole testing set. We encourage more empirical evaluations to support our findings.en_US
dcterms.accessRightsOpen Accessen_US
dcterms.audienceAcademicsen_US
dcterms.available2024-02-21en_US
dcterms.bibliographicCitationMontesinos-López, O. A., Solis-Camacho, M. A., Crespo-Herrera, L., Saint Pierre, C., Huerta Prado, G. I., Ramos-Pulido, S., Al-Nowibet, K., Fritsche-Neto, R., Gerard, G. S., Montesinos-López, A., & Crossa, J. (2024). Data augmentation enhances plant-genomic-enabled predictions. Genes, 15(3), 286. https://doi.org/10.3390/genes15030286en_US
dcterms.extent286en_US
dcterms.issued2024-03en_US
dcterms.languageenen_US
dcterms.licenseCC-BY-4.0en_US
dcterms.publisherMDPIen_US
dcterms.subjectmarker-assisted selectionen_US
dcterms.subjectplant breedingen_US
dcterms.subjectdataen_US
dcterms.subjectgenomesen_US
dcterms.typeJournal Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
67351.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
Journal Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: