Investigating the use of high resolution multi-spectral satellite imagery for crop mapping in Nigeria crop and landuse classification using WorldView-3 high resolution multispectral imagery and LANDSAT8 data

Loading...
Thumbnail Image

Date Issued

Date Online

Language

en

Review Status

Access Rights

Limited Access Limited Access

Share

Citation

Alabi, T., Haertel, M. & Chiejile, S. (2016). Investigating the use of high resolution multi-spectral satellite imagery for crop mapping in Nigeria crop and landuse classification using WorldView-3 high resolution multispectral imagery and LANDSAT8 data. proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2016). (pp. 109-120), Setubal, Portugal

Permanent link to cite or share this item

External link to download this item

DOI

Abstract/Description

Imagery from recently launched high spatial resolution WorldView-3 offers new opportunities for crop identification and landcover assessment. Multispectral WorldView-3 at 1.6m spatial resolution and LANDSAT8 images covering an extent of 100Km² in humid ecology of Nigeria were used for crop and landcover identification. Three supervised classification techniques (maximum likelihood(MLC), Neural Net clasifier(NNC) and support vector machine(SVM)) were used to classify WorldView-3 and LANDSAT8 into four crop classes and seven non-crop classes. For accuracy assessment, kappa coefficient, producer and user accuracies were used to evaluate the performance of all three supervised classifiers. NNC performed best with an overall accuracy(OA) of 92.20, kappa coefficient(KC) of 0.83 in landcover identification using WorldView-3. This was closely followed by SVM with an OA of 91.77%, KC of 0.83. MLC performed slightly lower at an OA of 91.25% and KC of 0.82. Classification of crops and landcover with LANDSAT8 was best with MLC classifier with an OA of 92.12% , KC of 0.89. Cassava at younger than 3 months old could not be identified correctly by all classifiers using WorldView-3 and LANDSAT8 products. In summary WorldView-3 and LANDSAT8 data had satisfactory performance in identifying different crop and landcover types though at varying degrees of accuracies.

AGROVOC Keywords
Countries
Organizations Affiliated to the Authors