5Gs for crop genetic improvement

cg.creator.identifierRajeev Varshney: 0000-0002-4562-9131
cg.identifier.doihttps://doi.org/10.1016/j.pbi.2019.12.004en
cg.issn1369-5266en
cg.journalCurrent Opinion in Plant Biologyen
cg.volume56en
dc.contributor.authorVarshney, Rajeev K.en
dc.contributor.authorSinha, Pallavien
dc.contributor.authorSingh, Vikas K.en
dc.contributor.authorKumar, Arvinden
dc.contributor.authorZhang, Qifaen
dc.contributor.authorBennetzen, Jeffrey L.en
dc.date.accessioned2024-12-19T12:53:54Zen
dc.date.available2024-12-19T12:53:54Zen
dc.identifier.urihttps://hdl.handle.net/10568/164465
dc.title5Gs for crop genetic improvementen
dcterms.abstractHere we propose a 5G breeding approach for bringing much-needed disruptive changes to crop improvement. These 5Gs are Genome assembly, Germplasm characterization, Gene function identification, Genomic breeding (GB), and Gene editing (GE). In our view, it is important to have genome assemblies available for each crop and a deep collection of germplasm characterized at sequencing and agronomic levels for identification of marker-trait associations and superior haplotypes. Systems biology and sequencing-based mapping approaches can be used to identify genes involved in pathways leading to the expression of a trait, thereby providing diagnostic markers for target traits. These genes, markers, haplotypes, and genome-wide sequencing data may be utilized in GB and GE methodologies in combination with a rapid cycle breeding strategy.en
dcterms.accessRightsOpen Access
dcterms.bibliographicCitationVarshney, Rajeev K; Sinha, Pallavi; Singh, Vikas K; Kumar, Arvind; Zhang, Qifa and Bennetzen, Jeffrey L. 2020. 5Gs for crop genetic improvement. Current Opinion in Plant Biology, Volume 56 p. 190-196en
dcterms.extentpp. 190-196en
dcterms.issued2020-08
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.publisherElsevieren
dcterms.subjectplant scienceen
dcterms.typeJournal Article

Files