Predictive modeling of nutritional quality in Urochloa pastures from multispectral sensors and images using machine learning approaches

cg.authorship.typesCGIAR single centreen
cg.contributor.affiliationInternational Center for Tropical Agricultureen
cg.contributor.donorCGIAR Trust Funden
cg.contributor.initiativeAccelerated Breeding
cg.creator.identifierRodrigo Camelo: 0000-0003-0563-6123
cg.creator.identifierLuis M. Hernandez: 0000-0002-8816-0572
cg.creator.identifierJuan Andrés Cardoso Arango: 0000-0002-0252-4655
cg.placeCali, Colombiaen
cg.subject.actionAreaGenetic Innovation
cg.subject.alliancebiovciatCLIMATE CHANGEen
cg.subject.alliancebiovciatFARMING SYSTEMSen
cg.subject.alliancebiovciatFOOD SECURITYen
cg.subject.alliancebiovciatINFORMATICSen
cg.subject.alliancebiovciatINFORMATION SYSTEMSen
cg.subject.alliancebiovciatLIVESTOCKen
cg.subject.alliancebiovciatNUTRITIONen
cg.subject.alliancebiovciatPLANT BREEDINGen
cg.subject.alliancebiovciatPLANT GENETIC RESOURCESen
cg.subject.alliancebiovciatTROPICAL FORAGESen
cg.subject.impactAreaNutrition, health and food security
cg.subject.sdgSDG 2 - Zero hungeren
cg.subject.sdgSDG 3 - Good health and well-beingen
cg.subject.sdgSDG 8 - Decent work and economic growthen
cg.subject.sdgSDG 12 - Responsible consumption and productionen
cg.subject.sdgSDG 13 - Climate actionen
dc.contributor.authorCamelo-Munevar, Rodrigo Andrésen
dc.contributor.authorHernández, Luis Miguelen
dc.contributor.authorJauregui, Rosaen
dc.contributor.authorCardoso Arango, Juan Andrésen
dc.date.accessioned2023-11-09T15:35:23Zen
dc.date.available2023-11-09T15:35:23Zen
dc.identifier.urihttps://hdl.handle.net/10568/132880
dc.titlePredictive modeling of nutritional quality in Urochloa pastures from multispectral sensors and images using machine learning approachesen
dcterms.accessRightsOpen Access
dcterms.audienceAcademicsen
dcterms.audienceGeneral Publicen
dcterms.bibliographicCitationCamelo-Munevar, R.A.; Hernández, L.M.; Jauregui, R.; Cardoso-Arango, J.A. (2023) Predictive modeling of nutritional quality in Urochloa pastures from multispectral sensors and images using machine learning approaches. Poster prepared for African Plant Breeders Association 2023 Conference - Leveraging Genetic Innovation for Resilient African Food Systems in the wake of Global Shocks. Benguerir, Morocco, 23-26 October 2023. Cali (Colombia): International Center for Tropical Agriculture. 1 p.en
dcterms.extent1 p.en
dcterms.issued2023-10-23
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.publisherInternational Center for Tropical Agricultureen
dcterms.subjectplant nutritionen
dcterms.subjectmachine learningen
dcterms.subjectproductivityen
dcterms.subjectpasturesen
dcterms.subjectnutritive valueen
dcterms.subjectunmanned aerial vehiclesen
dcterms.subjectmodelsen
dcterms.subjecturochloaen
dcterms.typePoster

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Camelo et al. - Predictive modeling of nutricional quality.pdf
Size:
473.66 KB
Format:
Adobe Portable Document Format
Description:
Poster

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: