Nowcasting food insecurity interest with google trends data

cg.authorship.typesCGIAR single centreen_US
cg.contributor.affiliationUniversity of Moliseen_US
cg.contributor.affiliationInternational Center for Tropical Agricultureen_US
cg.creator.identifierBia Carneiro: 0000-0002-7957-8694en_US
cg.creator.identifierGiuliano Resce: 0000-0002-3913-0510en_US
cg.identifier.doihttps://doi.org/10.4995/carma2024.2024.17503en_US
cg.identifier.urlhttp://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/viewFile/19017/8960en_US
cg.reviewStatusPeer Reviewen_US
cg.subject.actionAreaSystems Transformationen_US
cg.subject.alliancebiovciatFOOD SECURITYen_US
cg.subject.impactAreaNutrition, health and food securityen_US
cg.subject.sdgSDG 2 - Zero hungeren_US
dc.contributor.authorCaravaggio, Nicolaen_US
dc.contributor.authorCarneiro, Biaen_US
dc.contributor.authorResce, Giulianoen_US
dc.date.accessioned2024-07-25T20:21:52Zen_US
dc.date.available2024-07-25T20:21:52Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/149276en_US
dc.titleNowcasting food insecurity interest with google trends dataen_US
dcterms.abstractThis research explores the potential of Google Trends (GT) data as a tool for generating a daily index of food insecurity at the national level, focusing on regions monitored by the Famine Early Warning Systems Network (FEWS NET) and the Global Fragility Act (GFA). Drawing inspiration from previous studies on GT's predictive capabilities, the authors employ Natural Language Processing (NLP) to analyse food security reporting from FEWS NET documents. We identify key predictors of food insecurity using a LASSO regression approach and construct a daily economic sentiment index (DESI) for each country. Unlike traditional methods, the study considers multiple languages and weights search terms based on LASSO coefficients. The resulting Synthetic Search Interest (SSI) index for food insecurity demonstrates a statistically significant correlation with FAO's share of the population in severe food insecurity, affirming GT's potential as a monitoring tool. The research contributes a novel methodology and insights into leveraging real-time data for early warnings in food security.en_US
dcterms.accessRightsOpen Accessen_US
dcterms.bibliographicCitationCaravaggio, N.; Carneiro, B.; Resce, G. (2024) Nowcasting food insecurity interest with google trends data. 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024). Valencia, 26-28 June 2024. 7 p.en_US
dcterms.extent7 p.en_US
dcterms.issued2024-07-15en_US
dcterms.languageenen_US
dcterms.licenseCC-BY-4.0en_US
dcterms.subjectmachine learningen_US
dcterms.subjectfood securityen_US
dcterms.subjectearly warning systemsen_US
dcterms.subjectnatural language processingen_US
dcterms.subjectnowcastingen_US
dcterms.subjectgoogle trendsen_US
dcterms.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
17503-53199-1-PB.pdf
Size:
309.89 KB
Format:
Adobe Portable Document Format