Nowcasting food insecurity interest with google trends data

cg.authorship.typesCGIAR single centreen
cg.contributor.affiliationUniversity of Moliseen
cg.contributor.affiliationInternational Center for Tropical Agricultureen
cg.creator.identifierBia Carneiro: 0000-0002-7957-8694en
cg.creator.identifierGiuliano Resce: 0000-0002-3913-0510en
cg.identifier.doihttps://doi.org/10.4995/carma2024.2024.17503en
cg.identifier.urlhttp://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/viewFile/19017/8960en
cg.reviewStatusPeer Reviewen
cg.subject.actionAreaSystems Transformation
cg.subject.alliancebiovciatFOOD SECURITYen
cg.subject.impactAreaNutrition, health and food security
cg.subject.sdgSDG 2 - Zero hungeren
dc.contributor.authorCaravaggio, Nicolaen
dc.contributor.authorCarneiro, Biaen
dc.contributor.authorResce, Giulianoen
dc.date.accessioned2024-07-25T20:21:52Zen
dc.date.available2024-07-25T20:21:52Zen
dc.identifier.urihttps://hdl.handle.net/10568/149276
dc.titleNowcasting food insecurity interest with google trends dataen
dcterms.abstractThis research explores the potential of Google Trends (GT) data as a tool for generating a daily index of food insecurity at the national level, focusing on regions monitored by the Famine Early Warning Systems Network (FEWS NET) and the Global Fragility Act (GFA). Drawing inspiration from previous studies on GT's predictive capabilities, the authors employ Natural Language Processing (NLP) to analyse food security reporting from FEWS NET documents. We identify key predictors of food insecurity using a LASSO regression approach and construct a daily economic sentiment index (DESI) for each country. Unlike traditional methods, the study considers multiple languages and weights search terms based on LASSO coefficients. The resulting Synthetic Search Interest (SSI) index for food insecurity demonstrates a statistically significant correlation with FAO's share of the population in severe food insecurity, affirming GT's potential as a monitoring tool. The research contributes a novel methodology and insights into leveraging real-time data for early warnings in food security.en
dcterms.accessRightsOpen Access
dcterms.bibliographicCitationCaravaggio, N.; Carneiro, B.; Resce, G. (2024) Nowcasting food insecurity interest with google trends data. 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024). Valencia, 26-28 June 2024. 7 p.en
dcterms.extent7 p.en
dcterms.issued2024-07-15en
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.subjectmachine learningen
dcterms.subjectfood securityen
dcterms.subjectearly warning systemsen
dcterms.subjectnatural language processingen
dcterms.subjectnowcastingen
dcterms.subjectgoogle trendsen
dcterms.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
17503-53199-1-PB.pdf
Size:
309.89 KB
Format:
Adobe Portable Document Format