Leveraging edge artificial intelligence for sustainable agriculture
cg.authorship.types | CGIAR and advanced research institute | en_US |
cg.contributor.affiliation | Africa Rice Center | en_US |
cg.contributor.affiliation | University of Southern Queensland | en_US |
cg.contributor.affiliation | Université du Luxembourg | en_US |
cg.contributor.affiliation | Institute of Sugar Beet Research | en_US |
cg.contributor.affiliation | University of Liège | en_US |
cg.contributor.affiliation | Lycée Technique Agricole de Gilsdorf | en_US |
cg.contributor.affiliation | North Oldmoss Croft | en_US |
cg.contributor.affiliation | Delft University of Technology | en_US |
cg.contributor.donor | Deutsche Forschungsgemeinschaft | en_US |
cg.contributor.donor | EU Horizon Europe research and innovation program | en_US |
cg.contributor.donor | CGIAR Trust Fund | en_US |
cg.contributor.initiative | Excellence in Agronomy | en_US |
cg.coverage.region | Africa | en_US |
cg.creator.identifier | Louis Kouadio :0000-0001-9669-7807 | en_US |
cg.howPublished | Formally Published | en_US |
cg.identifier.doi | https://doi.org/10.1038/s41893-024-01352-4 | en_US |
cg.identifier.url | https://www.nature.com/articles/s41893-024-01352-4 | en_US |
cg.isijournal | ISI Journal | en_US |
cg.issn | 2398-9629 | en_US |
cg.issue | 7 | en_US |
cg.journal | Nature Sustainability | en_US |
cg.reviewStatus | Peer Review | en_US |
cg.subject.actionArea | Resilient Agrifood Systems | en_US |
cg.subject.impactArea | Poverty reduction, livelihoods and jobs | en_US |
cg.subject.impactPlatform | Poverty Reduction, Livelihoods and Jobs | en_US |
cg.volume | 7 | en_US |
dc.contributor.author | El Jarroudi, M. | en_US |
dc.contributor.author | Kouadio, L. | en_US |
dc.contributor.author | Delfosse, P. | en_US |
dc.contributor.author | Bock, C. H. | en_US |
dc.contributor.author | Mahlein, A. K. | en_US |
dc.contributor.author | Fettweis, X. | en_US |
dc.contributor.author | Mercatoris, B. | en_US |
dc.contributor.author | Adams, F. | en_US |
dc.contributor.author | Lenné, J. M. | en_US |
dc.contributor.author | Hamdioui, S. | en_US |
dc.date.accessioned | 2024-12-03T11:39:06Z | en_US |
dc.date.available | 2024-12-03T11:39:06Z | en_US |
dc.identifier.uri | https://hdl.handle.net/10568/162970 | en_US |
dc.title | Leveraging edge artificial intelligence for sustainable agriculture | en_US |
dcterms.abstract | Effectively feeding a burgeoning world population is one of the main goals of sustainable agricultural practices. Digital technology, such as edge artificial intelligence (AI), has the potential to introduce substantial benefits to agriculture by enhancing farming practices that can improve agricultural production efficiency, yield, quality and safety. However, the adoption of edge AI faces several challenges, including the need for innovative and efficient edge AI solutions and greater investment in infrastructure and training, all compounded by various environmental, social and economic constraints. Here we provide a roadmap for leveraging edge AI at the intersection of food production and sustainability. | en_US |
dcterms.accessRights | Limited Access | en_US |
dcterms.audience | CGIAR | en_US |
dcterms.audience | Donors | en_US |
dcterms.audience | Scientists | en_US |
dcterms.available | 2024-06-10 | en_US |
dcterms.bibliographicCitation | El Jarroudi, M., Kouadio, L., Delfosse, P., Bock, C. H., Mahlein, A. K., Fettweis, X., Mercatoris, B., Adams, F., Lenné, J. M. and Hamdioui, S. 2024. Leveraging edge artificial intelligence for sustainable agriculture. Nature Sustainability 7(7):846-854. | en_US |
dcterms.extent | 846-854 | en_US |
dcterms.issued | 2024-06-10 | en_US |
dcterms.language | en | en_US |
dcterms.license | Other | en_US |
dcterms.subject | Artificial intelligence | en_US |
dcterms.subject | sustainable agriculture | en_US |
dcterms.type | Journal Article | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: