CIAT-developed machine learning technology identifies agroforestry crops and other land cover types using publicly available (free) satellite imagery.

cg.contributor.crpClimate Change, Agriculture and Food Security
cg.coverage.countryHonduras
cg.coverage.countryIndonesia
cg.coverage.countryVietnam
cg.coverage.iso3166-alpha2HN
cg.coverage.iso3166-alpha2ID
cg.coverage.iso3166-alpha2VN
cg.coverage.regionCentral America
cg.coverage.regionSouth-eastern Asia
cg.numberIN-1711en
dc.contributor.authorCGIAR Research Program on Climate Change, Agriculture and Food Securityen
dc.date.accessioned2022-10-06T14:19:50Zen
dc.date.available2022-10-06T14:19:50Zen
dc.identifier.urihttps://hdl.handle.net/10568/123071
dc.titleCIAT-developed machine learning technology identifies agroforestry crops and other land cover types using publicly available (free) satellite imagery.en
dcterms.abstractThe underlying machine learning technology has been tested, developed and proven. A successful pilot land cover detection was completed in Honduras. There is ongoing work on making the system operational, optimizing the system training process and potentially expanding the range of land cover types the system is capable of detecting.en
dcterms.accessRightsOpen Access
dcterms.bibliographicCitationCGIAR Research Program on Climate Change, Agriculture and Food Security. 2020. CIAT-developed machine learning technology identifies agroforestry crops and other land cover types using publicly available (free) satellite imagery. Reported in Climate Change, Agriculture and Food Security Annual Report 2020. Innovations.en
dcterms.isPartOfCRP Innovationen
dcterms.issued2020-12-31
dcterms.languageen
dcterms.licenseOther
dcterms.subjectcropsen
dcterms.subjecttechnologyen
dcterms.subjecttrainingen
dcterms.subjectagroforestryen
dcterms.subjectdevelopmenten
dcterms.subjectrural developmenten
dcterms.subjectlearningen
dcterms.subjectlanden
dcterms.subjectland coveren
dcterms.subjectsatellite imageryen
dcterms.subjectsystemsen
dcterms.subjectagrifood systemsen
dcterms.subjectmachine learningen
dcterms.subjectdetectionen
dcterms.subjectimageryen
dcterms.subjectsatelliteen
dcterms.typeReport

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ProjectInnovationSummary-CCAFS-P1597-I1711.pdf
Size:
93.96 KB
Format:
Adobe Portable Document Format
Description:
Report