Estimating gender inequalities in labor-market outcomes using mobile phone data

cg.authorship.typesCGIAR single centreen
cg.contributor.affiliationInternational Food Policy Research Instituteen
cg.contributor.donorCGIAR Trust Funden
cg.contributor.initiativeDigital Innovation
cg.coverage.countryGhana
cg.coverage.iso3166-alpha2GH
cg.coverage.regionAfrica
cg.coverage.regionWestern Africa
cg.identifier.publicationRankNot rankeden
cg.identifier.urlhttps://gender.cgiar.org/news/estimating-gender-inequalities-labor-market-outcomes-using-mobile-phone-dataen
cg.subject.actionAreaSystems Transformation
cg.subject.impactAreaGender equality, youth and social inclusion
cg.subject.impactPlatformGender
dc.contributor.authorSeymour, Gregen
dc.contributor.authorFollett, Lendieen
dc.contributor.authorHenderson, Heathen
dc.date.accessioned2024-01-16T18:42:24Zen
dc.date.available2024-01-16T18:42:24Zen
dc.identifier.urihttps://hdl.handle.net/10568/137808
dc.titleEstimating gender inequalities in labor-market outcomes using mobile phone dataen
dcterms.abstractMobile phone data holds promise for contributing to slow-filling gaps about women and men’s labor. We generated gender-specific predictions of three labor market indicators (employment, unemployment and underemployment) using machine learning models that analyzed digital trace data and geospatial data. While the models correctly predict mobile phone users’ gender in most cases, they predict users’ labor market status much less accurately. With further refinement, we believe the methodology still shows prospects for filling gender data gaps in individual-level labor market statistics.en
dcterms.accessRightsOpen Access
dcterms.audienceGeneral Publicen
dcterms.audiencePolicy Makersen
dcterms.bibliographicCitationSeymour, Greg; Follett, Lendie; and Henderson, Heath. 2023. Estimating gender inequalities in labor-market outcomes using mobile phone data. CGIAR Blog.en
dcterms.issued2023-11-29en
dcterms.languageen
dcterms.licenseOther
dcterms.publisherCGIARen
dcterms.subjectdataen
dcterms.subjectsurveysen
dcterms.subjectgenderen
dcterms.subjectlabour marketen
dcterms.subjectmachine learningen
dcterms.subjectspatial dataen
dcterms.typeBlog Post

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: