Machine learning approach for high-throughput phenolic antioxidant screening in black Rice germplasm collection based on surface FTIR

cg.authorship.typesCGIAR and advanced research instituteen_US
cg.contributor.affiliationSwinburne University of Technologyen_US
cg.contributor.affiliationInternational Rice Research Instituteen_US
cg.contributor.affiliationSouthern Cross Universityen_US
cg.contributor.donorAustralian Research Council Linkage Projecten_US
cg.contributor.donorAcademy for International Agricultural Researchen_US
cg.contributor.donorCGIAR Trust Funden_US
cg.contributor.initiativeAccelerated Breedingen_US
cg.coverage.regionAsiaen_US
cg.coverage.regionAfricaen_US
cg.coverage.regionAustralia and New Zealanden_US
cg.creator.identifierAchini Herath: 0009-0005-7217-0804en_US
cg.creator.identifierRhowell Jr. Tiozon: 0000-0002-2177-8730en_US
cg.creator.identifiertobias kretzschmar: 0000-0002-8227-0746en_US
cg.creator.identifierNese Sreenivasulu: 0000-0002-3998-038Xen_US
cg.creator.identifierPeter Mahon: 0000-0001-8110-2604en_US
cg.creator.identifierVito Butardo: 0000-0003-3418-2140en_US
cg.howPublishedFormally Publisheden_US
cg.identifier.doihttps://doi.org/10.1016/j.foodchem.2024.140728en_US
cg.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0308814624023781en_US
cg.isijournalISI Journalen_US
cg.issn0308-8146en_US
cg.issue140728en_US
cg.journalFood Chemistryen_US
cg.reviewStatusPeer Reviewen_US
cg.subject.actionAreaGenetic Innovationen_US
cg.subject.impactAreaNutrition, health and food securityen_US
cg.volume460en_US
dc.contributor.authorHerath, Achinien_US
dc.contributor.authorTiozon, Rhowell Jr.en_US
dc.contributor.authorKretzschmar, Tobiasen_US
dc.contributor.authorSreenivasulu, Neseen_US
dc.contributor.authorMahon, Peteren_US
dc.contributor.authorButardo, Vitoen_US
dc.date.accessioned2024-12-20T16:03:58Zen_US
dc.date.available2024-12-20T16:03:58Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/168152en_US
dc.titleMachine learning approach for high-throughput phenolic antioxidant screening in black Rice germplasm collection based on surface FTIRen_US
dcterms.abstractPigmented rice contains beneficial phenolic antioxidants but analysing them across germplasm collections is laborious and time-consuming. Here we utilised rapid surface Fourier transform infrared (FTIR) spectroscopy and machine learning algorithms (ML) to predict and classify polyphenolic antioxidants. Total phenolics, flavonoids, anthocyanins, and proanthocyanidins were quantified biochemically from 270 diverse global coloured rice collection and attenuated total reflectance (ATR) FTIR spectra were obtained by scanning whole grain surfaces at 800–4000 cm−1. Five ML classification models were optimised using the biochemical and spectral data which performed predictions with 93.5%–100% accuracy. Random Forest and Support Vector Machine models identified key FTIR peaks linked to flavonols, flavones and anthocyanins as important model predictors. This research successfully established direct and non-destructive surface chemistry spectroscopy of the aleurone layer of pigmented rice integrated with ML models as a viable high-throughput platform to accelerate the analysis and profiling of nutritionally valuable coloured rice varieties.en_US
dcterms.accessRightsOpen Accessen_US
dcterms.audienceCGIARen_US
dcterms.audienceAcademicsen_US
dcterms.audienceDevelopment Practitionersen_US
dcterms.audienceFarmersen_US
dcterms.audiencePolicy Makersen_US
dcterms.audienceScientistsen_US
dcterms.bibliographicCitationHerath, Achini, Tobias Kretzschmar, Nese Sreenivasulu, Peter Mahon, and Vito Butardo Jr. "Machine learning approach for high-throughput phenolic antioxidant screening in black Rice germplasm collection based on surface FTIR." Food chemistry 460 (2024): 140728.en_US
dcterms.extent9 p.en_US
dcterms.issued2024-08-02en_US
dcterms.languageenen_US
dcterms.licenseCC-BY-4.0en_US
dcterms.publisherElsevieren_US
dcterms.subjectanthocyaninsen_US
dcterms.subjectmachine learningen_US
dcterms.subjecthigh-throughput phenotypingen_US
dcterms.subjectscreeningen_US
dcterms.subjectpigmentsen_US
dcterms.subjectriceen_US
dcterms.subjectmultivariate analysisen_US
dcterms.subjectflavonoidsen_US
dcterms.typeJournal Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
article_Machine learning approach.pdf
Size:
4.42 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: