Spatiotemporal performance evaluation of high-resolution multiple satellite and reanalysis precipitation products over the semiarid region of India

cg.authorship.typesCGIAR and developing country instituteen_US
cg.authorship.typesCGIAR and advanced research instituteen_US
cg.contributor.affiliationTamil Nadu Agricultural Universityen_US
cg.contributor.affiliationUniversity of Southern Queenslanden_US
cg.contributor.affiliationAfrica Rice Centeren_US
cg.contributor.donorCGIAR Trust Funden_US
cg.contributor.initiativeExcellence in Agronomyen_US
cg.coverage.countryIndiaen_US
cg.coverage.iso3166-alpha2INen_US
cg.coverage.regionAsiaen_US
cg.coverage.regionSouthern Asiaen_US
cg.howPublishedFormally Publisheden_US
cg.identifier.doihttps://doi.org/10.1007/s10661-024-13152-6en_US
cg.identifier.urlhttps://link.springer.com/10.1007/s10661-024-13152-6en_US
cg.isijournalISI Journalen_US
cg.issn1573-2959en_US
cg.issue11en_US
cg.journalEnvironmental Monitoring and Assessmenten_US
cg.reviewStatusPeer Reviewen_US
cg.subject.actionAreaResilient Agrifood Systemsen_US
cg.subject.impactAreaPoverty reduction, livelihoods and jobsen_US
cg.subject.impactPlatformPoverty Reduction, Livelihoods and Jobsen_US
cg.volume196en_US
dc.contributor.authorDevadarshin, E.en_US
dc.contributor.authorBhuvaneswari, K.en_US
dc.contributor.authorKumar, S.M.en_US
dc.contributor.authorGeethalakshmi, V.en_US
dc.contributor.authorDhasarathan, M.en_US
dc.contributor.authorSenthil, A.en_US
dc.contributor.authorSenthilraja, K.en_US
dc.contributor.authorMushtaq, S.en_US
dc.contributor.authorNguyen-Huy, T.en_US
dc.contributor.authorMai, T.en_US
dc.contributor.authorKouadio, L.en_US
dc.date.accessioned2024-12-04T04:24:43Zen_US
dc.date.available2024-12-04T04:24:43Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/163005en_US
dc.titleSpatiotemporal performance evaluation of high-resolution multiple satellite and reanalysis precipitation products over the semiarid region of Indiaen_US
dcterms.abstractThe present investigation evaluates three satellite precipitation products (SPPs), Multi-Source Weighted-Ensemble Precipitation (MSWEP), Global Precipitation Climatology Centre (GPCC), Climate Hazard Infrared Precipitation with Station Data (CHIRPS), and two reanalysis datasets, namely, the ERA5 atmosphere reanalysis dataset (ERA5) and Indian Monsoon Data Assimilation and Analysis (IMDAA), against the good quality gridded reference dataset (1991–2022) developed by the India Meteorological Department (IMD). The evaluation was carried out in terms of the rainfall detection ability and estimation accuracy of the products using metrics such as the false alarm ratio (FAR), probability of detection (POD), misses, root mean square error (RMSE), and percent bias (PBIAS). Among all the rainfall products, ERA5 had the best ability to capture rainfall events with a higher POD, followed by MSWEP. Both MSWEP and ERA5 had PODs of 70–100% in more than 90% of the grids and less than 35% of missing rainfall events in the entire Tamil Nadu. In the case of the rainfall estimation accuracy evaluation, the MSWEP exhibited superior performance, with lower RMSEs and biases ranging from − 25 to 25% at the annual and seasonal scales. In northeast monsoon (NEM), CHIRPS demonstrated a comparable performance to that of MSWEP in terms of the RMSE and PBIAS. These findings will help product users select the best reliable rainfall dataset for improved research, diversified applications in various sectors, and policy-making decisions.en_US
dcterms.accessRightsLimited Accessen_US
dcterms.audienceCGIARen_US
dcterms.audienceDonorsen_US
dcterms.audienceScientistsen_US
dcterms.available2024-10-03en_US
dcterms.bibliographicCitationDevadarshini, E., Bhuvaneswari, K., Mohan Kumar, S., Geethalakshmi, V., Dhasarathan, M., Senthil, A., Senthilraja, K., Mushtaq, M., Nguyen-Huy, T., Mai, T. and Kouadio, L. 2024. Spatiotemporal performance evaluation of high-resolution multiple satellite and reanalysis precipitation products over the semiarid region of India. Environmental Monitoring and Assessment. 196(11):1006.en_US
dcterms.extent1006en_US
dcterms.issued2024-10-03en_US
dcterms.languageenen_US
dcterms.licenseOtheren_US
dcterms.subjectrainfallen_US
dcterms.subjectclimatologyen_US
dcterms.subjectprecipitationen_US
dcterms.typeJournal Articleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: