Co-infection with Rift Valley fever virus, Brucella spp. and Coxiella burnetii in humans and animals in Kenya: Disease burden and ecological factors
Permanent URI for this collectionhttps://hdl.handle.net/10568/105529
Browse
Recent Submissions
Item The bacterial and pathogenic landscape of African buffalo (Syncerus caffer) whole blood and serum from Kenya(Journal Article, 2025-01-12) Nyamota, Richard; Middlebrook, E.A.; Abkallo, Hussein M.; Akoko, James M.; Gakuya, F.; Wambua, L.; Ronoh, B.; Lekolool, I.; Mwatondo, Athman; Muturi, Mathew; Bett, Bernard K.; Fair, J.M.; Bartlow, A.W.Background: African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance. This study investigated the blood microbiome of clinically healthy wild buffaloes in Kenya to determine its applicability in agnostic testing for bacteria in apparently healthy wild animals. Methods: Whole blood and serum samples were collected from 46 wild African buffalos from Meru National Park (30), Buffalo Springs (6) and Shaba (10) National Reserves in upper eastern Kenya. Total deoxyribonucleic acid (DNA) was extracted from these samples and subjected to amplicon-based sequencing targeting the 16 S rRNA gene. The bacteria operational taxonomic units (OTU) were identified to species levels by mapping the generated V12 and V45 regions of 16 S rRNA gene to the SILVA database. These OTU tables were used to infer the microbial abundance in each sample type and at the individual animal level. The sequences for the corresponding OTUs were also used to generate phylogenetic trees and thus infer evolution for the OTUs of interest. Results: Here, we demonstrate that buffaloes harbor many bacteria in their blood. We also report a diversity of 16 S rRNA gene sequences for Anaplasma and Mycoplasma from individual animals. By sequencing both whole blood and serum in triplicate for each animal, we provide evidence of the differences in detecting bacteria in both sample types. Conclusions: Diverse bacteria, including some potential pathogens, can be found in the blood of clinically healthy wild African buffalo. Agnostic surveillance for such pathogens can be achieved through blood microbiome sequencing. However, considerations for the question being asked for the blood microbiome in wildlife will impact the choice for using whole blood or serum for sequencing.Item Multiple pathogens co-exposure and associated risk factors among cattle reared in a wildlife-livestock interface area in Kenya(Journal Article, 2024-07-25) Manyenya, S.; Nthiwa, Daniel; Lutta, H.O.; Muturi, M.; Nyamota, Richard; Mwatondo, A.; Watene, Grace; Akoko, James M.; Bett, Bernard K.Introduction: Understanding multi-pathogen infections/exposures in livestock is critical to inform prevention and control measures against infectious diseases. We investigated the co-exposure of foot-and-mouth disease virus (FMDV), Brucella spp., Leptospira spp., and Coxiella burnetii in cattle in three zones stratified by land use change and with different wildlife-livestock interactions in Narok county, Kenya. We also assessed potential risk factors associated with the transmission of these pathogens in cattle. Methods: We identified five villages purposively, two each for areas with intensive (zone 1) and moderate wildlife-livestock interactions (zone 2) and one for locations with low wildlife-livestock interactions (zone 3). We sampled 1,170 cattle from 390 herds through a cross-sectional study and tested the serum samples for antibodies against the focal pathogens using enzyme-linked immunosorbent assay (ELISA) kits. A questionnaire was administered to gather epidemiological data on the putative risk factors associated with cattle’s exposure to the investigated pathogens. Data were analyzed using the Bayesian hierarchical models with herd number as a random effect to adjust for the within-herd clustering of the various co-exposures among cattle. Results: Overall, 88.0% (95% CI: 85.0–90.5) of the cattle tested positive for at least one of the targeted pathogens, while 41.7% (95% CI: 37.7–45.8) were seropositive to at least two pathogens. FMDV and Brucella spp. had the highest co-exposure at 33.7% (95% CI: 30.9–36.5), followed by FMDV and Leptospira spp. (21.8%, 95% CI: 19.5–24.4), Leptospira spp. and Brucella spp. (8.8%, 95% CI: 7.2–10.6), FMDV and C. burnetii (1.5%, 95% CI: 0.7–2.8), Brucella spp. and C. burnetii (1.0%, 95% CI: 0.3–2.2), and lowest for Leptospira spp. and C. burnetii (0.3%, 95% CI: 0.0–1.2). Cattle with FMDV and Brucella spp., and Brucella spp. and Leptospira spp. co-exposures and those simultaneously exposed to FMDV, Brucella spp. and Leptospira spp. were significantly higher in zone 1 than in zones 2 and 3. However, FMDV and Leptospira spp. co-exposure was higher in zones 1 and 2 than zone 3. Discussion/conclusion: We recommend the establishment of a One Health surveillance system in the study area to reduce the morbidity of the targeted zoonotic pathogens in cattle and the risks of transmission to humans.Item Mapping brucellosis risk in Kenya and its implications for control strategies in sub-Saharan Africa(Journal Article, 2023-11-18) Akoko, James M.; Mwatondo, Athman; Muturi, Mathew; Wambua, Lillian; Abkallo, Hussein M.; Nyamota, Richard; Bosire, Caroline; Oloo, Stephen; Limbaso, K.S.; Gakuya, F.; Nthiwa, D.; Bartlow, A.; Middlebrook, E.; Fair, J.; Ogutu, J.O.; Gachohi, J.; Njenga, K.; Bett, Bernard K.In Sub-Saharan Africa (SSA), effective brucellosis control is limited, in part, by the lack of long-term commitments by governments to control the disease and the absence of reliable national human and livestock population-based data to inform policies. Therefore, we conducted a study to establish the national prevalence and develop a risk map for Brucella spp. in cattle to contribute to plans to eliminate the disease in Kenya by the year 2040. We randomly generated 268 geolocations and distributed them across Kenya, proportionate to the area of each of the five agroecological zones and the associated cattle population. Cattle herds closest to each selected geolocation were identified for sampling. Up to 25 cattle were sampled per geolocation and a semi-structured questionnaire was administered to their owners. We tested 6,593 cattle samples for Brucella immunoglobulin G (IgG) antibodies using an Enzyme-linked immunosorbent assay (ELISA). We assessed potential risk factors and performed spatial analyses and prevalence mapping using approximate Bayesian inference implemented via the integrated nested Laplace approximation (INLA) method. The national Brucella spp. prevalence was 6.8% (95% CI: 6.2–7.4%). Exposure levels varied significantly between agro-ecological zones, with a high of 8.5% in the very arid zone with the lowest agricultural potential relative to a low of 0.0% in the agro-alpine zone with the highest agricultural potential. Additionally, seroprevalence increased with herd size, and the odds of seropositivity were significantly higher for females and adult animals than for males or calves. Similarly, animals with a history of abortion, or with multiple reproductive syndromes had higher seropositivity than those without. At the herd level, the risk of Brucella spp. transmission was higher in larger herds, and herds with a history of reproductive problems such as abortion, giving birth to weak calves, or having swollen testes. Geographic localities with high Brucella seroprevalence occurred in northern, eastern, and southern regions of Kenya all primarily characterized by semi-arid or arid agro-ecological zones dominated by livestock pastoralism interspersed with vast areas with mixed livestock-wildlife systems. The large spatial extent of our survey provides compelling evidence for the widespread geographical distribution of brucellosis risk across Kenya in a manner easily understandable for policymakers. Our findings can provide a basis for risk-stratified pilot studies aiming to investigate the cost-effectiveness and efficacy of singular and combined preventive intervention strategies that seek to inform Kenya’s Brucellosis Control Policy.Item Seroprevalence and related risk factors of Brucella spp. in livestock and humans in Garbatula subcounty, Isiolo county, Kenya(Journal Article, 2023-10-16) Mwatondo, Athman; Muturi, Mathew; Akoko, James M.; Nyamota, Richard; Nthiwa, D.; Maina, J.; Omolo, J.; Gichuhi, S.; Mureithi, M.W.; Bett, Bernard K.Background Brucellosis is a neglected zoonotic disease that affects both animals and humans, causing debilitating illness in humans and socio-economic losses in livestock-keeping households globally. The disease is endemic in many developing countries, including Kenya, but measures to prevent and control the disease are often inadequate among high-risk populations. This study aimed to investigate the human and livestock seroprevalence of brucellosis and associated risk factors of Brucella spp. in a pastoralist region of northern Kenya. Methods A cross-sectional survey was conducted using a two-stage cluster sampling method to select households, livestock, and humans for sampling. Blood samples were collected from 683 humans and 2157 animals, and Brucella immunoglobulin G (IgG) antibodies were detected using enzyme-linked immunosorbent assays. A structured questionnaire was used to collect data on potential risk factors associated with human and animal exposures. Risk factors associated with Brucella spp. exposures in humans and livestock were identified using Multivariate logistic regression. Results The results indicated an overall livestock Brucella spp. seroprevalence of 10.4% (95% Confidence Interval (CI): 9.2–11.7). Camels had the highest exposure rates at 19.6% (95% CI: 12.4–27.3), followed by cattle at 13.2% (95% CI: 9.3–17.1), goats at 13.1% (95% CI: 11.1–15.3) and sheep at 5.4% (95% CI: 4.0–6.9). The herd-level seroprevalence was 51.7% (95% CI, 47.9–55.7). Adult animals (Adjusted Odds Ratio (aOR) = 2.3, CI = 1.3–4.0), female animals (aOR = 1.7, CI: 1.1–2.6), and large herd sizes (aOR = 2.3, CI = 1.3–4.0) were significantly associated with anti-brucella antibody detection while sheep had significantly lower odds of Brucella spp. exposure compared to cattle (aOR = 1.3, CI = 0.8–2.1) and camels (aOR = 2.4, CI = 1.2–4.8). Human individual and household seroprevalences were 54.0% (95 CI, 50.2–58.0) and 86.4% (84.0–89.0), respectively. Significant risk factors associated with human seropositivity included being male (aOR = 2.1, CI:1.3–3.2), residing in Sericho ward (aOR = 1.6, CI:1.1–2.5) and having no formal education (aOR = 3.0, CI:1.5–5.9). There was a strong correlation between human seropositivity and herd exposure (aOR = 1.6, CI:1.2–2.3). Conclusions The study provides evidence of high human and livestock exposures to Brucella spp. and identifies important risk factors associated with disease spread. These findings emphasize the need for targeted prevention and control measures to curb the spread of brucellosis and implement a One Health surveillance to ensure early detection of the disease in Isiolo County, Northern Kenya.Item Seroprevalence of Brucella spp. and Rift Valley fever virus among slaughterhouse workers in Isiolo County, northern Kenya(Journal Article, 2023-10-05) Nyamota, Richard; Maina, J.; Akoko, James M.; Nthiwa, D.; Mwatondo, Athman; Muturi, Mathew; Wambua, Lillian; Middlebrook, E.A.; Bartlow, A.W.; Fair, J.M.; Bett, Bernard K.Brucella spp. and Rift Valley fever virus (RVFV) are classified as priority zoonotic agents in Kenya, based on their public health and socioeconomic impact on the country. Data on the pathogen-specific and co-exposure levels is scarce due to limited active surveillance. This study investigated seroprevalence and co-exposure of Brucella spp. and RVFV and associated risk factors among slaughterhouse workers in Isiolo County, northern Kenya. A cross-sectional serosurvey was done in all 19 slaughterhouses in Isiolo County, enrolling 378 participants into the study. The overall seroprevalences for Brucella spp. and RVFV were 40.2% (95% CI: 35.2–45.4) and 18.3% (95% CI: 14.5–22.5), respectively while 10.3% (95% CI 7.4%-13.8%) of individuals were positive for antibodies against both Brucella spp. and RVFV. Virus neutralisation tests (VNT) confirmed anti-RVFV antibodies in 85% of ELISA-positive samples. Our seroprevalence results were comparable to community-level seroprevalences previously reported in the area. Since most of the study participants were not from livestock-keeping households, our findings attribute most of the detected infections to occupational exposure. The high exposure levels indicate slaughterhouse workers are the most at-risk population and there is need for infection, prevention, and control programs among this high-risk group. This is the first VNT confirmation of virus-neutralising antibodies among slaughterhouse workers in Isiolo County and corroborates reports of the area being a high-risk RVFV area as occasioned by previously reported outbreaks. This necessitates sensitization campaigns to enhance awareness of the risks involved and appropriate mitigation measures.Item Ecological and subject-level drivers of interepidemic Rift Valley fever virus exposure in humans and livestock in Northern Kenya(Journal Article, 2023-09-15) Muturi, Mathew; Mwatondo, Athman; Nijhof, A.M.; Akoko, James M.; Nyamota, Richard; Makori, A.; Nyamai, M.; Nthiwa, D.; Wambua, Lillian; Roesel, Kristina; Thumbi, Samuel M.; Bett, Bernard K.Nearly a century after the first reports of Rift Valley fever (RVF) were documented in Kenya, questions on the transmission dynamics of the disease remain. Specifically, data on viral maintenance in the quiescent years between epidemics is limited. We implemented a cross-sectional study in northern Kenya to determine the seroprevalence, risk factors, and ecological predictors of RVF in humans and livestock during an interepidemic period. Six hundred seventy-six human and 1,864 livestock samples were screened for anti-RVF Immunoglobulin G (IgG). Out of the 1,864 livestock samples tested for IgG, a subset of 1,103 samples was randomly selected for additional testing to detect the presence of anti-RVFV Immunoglobulin M (IgM). The anti-RVF virus (RVFV) IgG seropositivity in livestock and humans was 21.7% and 28.4%, respectively. RVFV IgM was detected in 0.4% of the livestock samples. Participation in the slaughter of livestock and age were positively associated with RVFV exposure in humans, while age was a significant factor in livestock. We detected significant interaction between rainfall and elevation's influence on livestock seropositivity, while in humans, elevation was negatively associated with RVF virus exposure. The linear increase of human and livestock exposure with age suggests an endemic transmission cycle, further corroborated by the detection of IgM antibodies in livestock.Item A scoping review of zoonotic parasites and pathogens associated with abattoirs in Eastern Africa and recommendations for abattoirs as disease surveillance sites(Journal Article, 2023-07-17) Rodarte, K.A.; Fair, J.M.; Bett, Bernard K.; Kerfua, S.D.; Fasina, F.O.; Bartlow, A.W.Abattoirs are facilities where livestock are slaughtered and are an important aspect in the food production chain. There are several types of abattoirs, which differ in infrastructure and facilities, sanitation and PPE practices, and adherence to regulations. In each abattoir facility, worker exposure to animals and animal products increases their risk of infection from zoonotic pathogens. Backyard abattoirs and slaughter slabs have the highest risk of pathogen transmission because of substandard hygiene practices and minimal infrastructure. These abattoir conditions can often contribute to environmental contamination and may play a significant role in disease outbreaks within communities. To assess further the risk of disease, we conducted a scoping review of parasites and pathogens among livestock and human workers in abattoirs across 13 Eastern African countries, which are hotspots for zoonoses. Our search results (n = 104 articles) showed the presence of bacteria, viruses, fungi, and macroparasites (nematodes, cestodes, etc.) in cattle, goats, sheep, pigs, camels, and poultry. Most articles reported results from cattle, and the most frequent pathogen detected was Mycobacterium bovis, which causes bovine tuberculosis. Some articles included worker survey and questionnaires that suggested how the use of PPE along with proper worker training and safe animal handling practices could reduce disease risk. Based on these findings, we discuss ways to improve abattoir biosafety and increase biosurveillance for disease control and mitigation. Abattoirs are a ‘catch all’ for pathogens, and by surveying animals at abattoirs, health officials can determine which diseases are prevalent in different regions and which pathogens are most likely transmitted from wildlife to livestock. We suggest a regional approach to biosurveillance, which will improve testing and data gathering for enhanced disease risk mapping and forecasting. Next generation sequencing will be key in identifying a wide range of pathogens, rather than a targeted approach.Item Co-infection project: Review workshop report(Report, 2022-07-30) Maina, J.; Muturi, M.; Mwatondo, A.; Akoko, James M.; Bett, Bernard K.Item Evidence of co-exposure with Brucella spp, Coxiella burnetii, and Rift Valley fever virus among various species of wildlife in Kenya(Journal Article, 2022-08-08) Gakuya, F.; Akoko, James M.; Wambua, Lillian; Nyamota, Richard; Ronoh, B.; Lekolool, I.; Mwatondo, Athman; Muturi, Mathew; Ouma, C.; Nthiwa, D.; Middlebrook, E.; Fair, J.; Gachohi, J.; Njenga, K.; Bett, Bernard K.Background Co-infection, especially with pathogens of dissimilar genetic makeup, may result in a more devastating impact on the host. Investigations on co-infection with neglected zoonotic pathogens in wildlife are necessary to inform appropriate prevention and control strategies to reduce disease burden in wildlife and the potential transmission of these pathogens between wildlife, livestock and humans. This study assessed co-exposure of various Kenyan wildflife species with Brucella spp, Coxiella burnetii and Rift Valley fever virus (RVFV). Methodology A total of 363 sera from 16 different wildlife species, most of them (92.6%) herbivores, were analysed by Enzyme-linked immunosorbent assay (ELISA) for IgG antibodies against Brucella spp, C. burnetii and RVFV. Further, 280 of these were tested by PCR to identify Brucella species. Results Of the 16 wildlife species tested, 15 (93.8%) were seropositive for at least one of the pathogens. Mean seropositivities were 18.9% (95% CI: 15.0–23.3) for RVFV, 13.7% (95% CI: 10.3–17.7) for Brucella spp and 9.1% (95% CI: 6.3–12.5) for C. burnetii. Buffaloes (n = 269) had higher seropositivity for Brucella spp. (17.1%, 95% CI: 13.0–21.7%) and RVFV (23.4%, 95% CI: 18.6–28.6%), while giraffes (n = 36) had the highest seropositivity for C. burnetii (44.4%, 95% CI: 27.9–61.9%). Importantly, 23 of the 93 (24.7%) animals positive for at least one pathogen were co-exposed, with 25.4% (18/71) of the positive buffaloes positive for brucellosis and RVFV. On molecular analysis, Brucella DNA was detected in 46 (19.5%, CI: 14.9–24.7) samples, with 4 (8.6%, 95% CI: 2.2–15.8) being identified as B. melitensis. The Fisher’s Exact test indicated that seropositivity varied significantly within the different animal families, with Brucella (p = 0.013), C. burnetii (p = <0.001) and RVFV (p = 0.007). Location was also significantly associated (p = <0.001) with Brucella spp. and C. burnetii seropositivities. Conclusion Of ~20% of Kenyan wildlife that are seropositive for Brucella spp, C. burnetii and RVFV, almost 25% indicate co-infections with the three pathogens, particularly with Brucella spp and RVFV.Item Genomic surveillance of Rift Valley fever virus: From sequencing to lineage assignment(Journal Article, 2022-12) Juma, John; Fonseca, V.; Konongoi, Samson L.; Heusden, P. van; Roesel, Kristina; Sang, R.; Bett, Bernard K.; Christoffels, A.; Oliveira, T. de; Oyola, Samuel O.Genetic evolution of Rift Valley fever virus (RVFV) in Africa has been shaped mainly by environmental changes such as abnormal rainfall patterns and climate change that has occurred over the last few decades. These gradual environmental changes are believed to have effected gene migration from macro (geographical) to micro (reassortment) levels. Presently, 15 lineages of RVFV have been identified to be circulating within the Sub-Saharan Africa. International trade in livestock and movement of mosquitoes are thought to be responsible for the outbreaks occurring outside endemic or enzootic regions. Virus spillover events contribute to outbreaks as was demonstrated by the largest epidemic of 1977 in Egypt. Genomic surveillance of the virus evolution is crucial in developing intervention strategies. Therefore, we have developed a computational tool for rapidly classifying and assigning lineages of the RVFV isolates. The computational method is presented both as a command line tool and a web application hosted at https://www.genomedetective.com/app/typingtool/rvfv/. Validation of the tool has been performed on a large dataset using glycoprotein gene (Gn) and whole genome sequences of the Large (L), Medium (M) and Small (S) segments of the RVFV retrieved from the National Center for Biotechnology Information (NCBI) GenBank database. Using the Gn nucleotide sequences, the RVFV typing tool was able to correctly classify all 234 RVFV sequences at species level with 100% specificity, sensitivity and accuracy. All the sequences in lineages A (n = 10), B (n = 1), C (n = 88), D (n = 1), E (n = 3), F (n = 2), G (n = 2), H (n = 105), I (n = 2), J (n = 1), K (n = 4), L (n = 8), M (n = 1), N (n = 5) and O (n = 1) were also correctly classified at phylogenetic level. Lineage assignment using whole RVFV genome sequences (L, M and S-segments) did not achieve 100% specificity, sensitivity and accuracy for all the sequences analyzed. We further tested our tool using genomic data that we generated by sequencing 5 samples collected following a recent RVF outbreak in Kenya. All the 5 samples were assigned lineage C by both the partial (Gn) and whole genome sequence classifiers. The tool is useful in tracing the origin of outbreaks and supporting surveillance efforts.Item Sero-epidemiological survey of Coxiella burnetii in livestock and humans in Tana River and Garissa counties in Kenya(Journal Article, 2022-03-03) Mwololo, D.; Nthiwa, Daniel; Kitala, P.; Abuom, T.; Wainaina, M.; Kairu-Wanyoike, S.; Lindahl, Johanna F.; Ontiri, Enoch; Bukachi, S.; Njeru, I.; Karanja, J.; Sang, R.; Grace, Delia; Bett, Bernard K.Background: Coxiella burnetii is a widely distributed pathogen, but data on its epidemiology in livestock, and human populations remains scanty, especially in developing countries such as Kenya. We used the One Health approach to estimate the seroprevalance of C. burnetii in cattle, sheep, goats and human populations in Tana River county, and in humans in Garissa county, Kenya. We also identified potential determinants of exposure among these hosts. Methods: Data were collected through a cross-sectional study with a cluster sampling design. Serum samples were taken from 2,727 animals (466 cattle, 1,333 goats, and 928 sheep) and 974 humans and screened for Phase I/II IgG antibodies against C. burnetii using enzyme-linked immunosorbent assay (ELISA). Data on potential factors associated with animal and human exposure were collected using a structured questionnaire. Multivariable analyses were performed with households as random effects to adjust for the within-household correlation of C. burnetii exposure among animals and humans, respectively. Results: The overall apparent seroprevalence estimates of C. burnetii in livestock and humans were 12.80% (95% confidence interval [CI]: 11.57-14.11) and 24.44% (95% CI: 21.77-27.26), respectively. In livestock, the seroprevalence differed significantly by species (p < 0.01). The highest seroprevalence estimates were observed in goats 15.22% (95% CI: 13.34-17.27), then sheep 14.22% (95% CI: 12.04-16.64) and with cattle 3.00% (95% CI; 1.65-4.99) showing lower values. Herd-level seropositivity of C. burnetii in livestock was not positively associated with human exposure. Multivariable results showed that female animals had higher odds of seropositivity for C. burnetii than males, while for animal age groups, adult animals had higher odds of seropositivity than calves, kids or lambs. For livestock species, both sheep and goats had significantly higher odds of seropositivity than cattle. In human populations, men had a significantly higher odds of testing positive for C. burnetii than women. Conclusions: This study provides evidence of livestock and human exposure to C. burnetii which could have serious economic implications on livestock production and impact on human health. These results also highlight the need to establish active surveillance in the study area to reduce the disease burden associated with this pathogen.Item Identification and distribution of pathogens coinfecting with Brucella spp., Coxiella burnetii and Rift Valley fever virus in humans, livestock and wildlife(Journal Article, 2022-05) Middlebrook, E.A.; Romero, A.T.; Bett, Bernard K.; Nthiwa, Daniel; Oyola, Samuel O.; Fair, J.M.; Bartlow, A.W.Zoonotic diseases, such as brucellosis, Q fever and Rift Valley fever (RVF) caused by Brucella spp., Coxiella burnetii and RVF virus, respectively, can have devastating effects on human, livestock, and wildlife health and cause economic hardship due to morbidity and mortality in livestock. Coinfection with multiple pathogens can lead to more severe disease outcomes and altered transmission dynamics. These three pathogens can alter host immune responses likely leading to increased morbidity, mortality and pathogen transmission during coinfection. Developing countries, such as those commonly afflicted by outbreaks of brucellosis, Q fever and RVF, have high disease burden and thus common coinfections. A literature survey provided information on case reports and studies investigating coinfections involving the three focal diseases. Fifty five studies were collected demonstrating coinfections of Brucella spp., C. burnetii or RVFV with 50 different pathogens, of which 64% were zoonotic. While the literature search criteria involved 'coinfection', only 24/55 studies showed coinfections with direct pathogen detection methods (microbiology, PCR and antigen test), while the rest only reported detection of antibodies against multiple pathogens, which only indicate a history of co-exposure, not concurrent infection. These studies lack the ability to test whether coinfection leads to changes in morbidity, mortality or transmission dynamics. We describe considerations and methods for identifying ongoing coinfections to address this critical blind spot in disease risk management.Item Incidence of Brucella infection in various livestock species raised under the pastoral production system in Isiolo County, Kenya(Journal Article, 2021-12) Njeru, Josiah; Nthiwa, Daniel; Akoko, James M.; Oyas, H.; Bett, Bernard K.Background: We implemented a longitudinal study to determine the incidence of Brucella infection in cattle, camels, sheep and goats that were being raised in a pastoral area in Isiolo County, Kenya. An initial cross-sectional survey was implemented to identify unexposed animals for follow up; that survey used 141 camels, 216 cattle, 208 sheep and 161 goats. Sera from these animals were screened for Brucella spp. using the Rose Bengal Plate test (RBPT), a modified RBPT, and an indirect multispecies Enzyme Linked Immunosorbent Assay (iELISA). Results of RBPT and iELISA were interpreted in parallel to determine seroprevalence. A total of 30 camels, 31 cattle, 22 sheep and 32 goats that were seronegative by all the above tests were recruited in a subsequent longitudinal study for follow up. These animals were followed for 12 months and tested for anti-Brucella antibodies using iELISA. Seroconversion among these animals was defined by a positive iELISA test following a negative iELISA result in the previous sampling period. All seropositive samples were further tested using real-time PCR-based assays to identify Brucella species. These analyses targeted the alkB and BMEI1162 genes for B. abortus, and B. melitensis, respectively. Data from the longitudinal study were analysed using Cox proportional hazards model that accounted for within-herds clustering of Brucella infections. Results: The overall incidence rate of Brucella infection was 0.024 (95% confidence interval [CI]: 0.014-0.037) cases per animal-months at risk. Brucella infection incidence in camels, cattle, goats and sheep were 0.053 (0.022-0.104), 0.028 (0.010-0.061), 0.013 (0.003-0.036) and 0.006 (0.0002-0.034) cases per animal-month at risk, respectively. The incidence rate of Brucella infection among females and males were 0.020 (0.009-0.036) and 0.016 (0.004-0.091), respectively. Real-time PCR analyses showed that B. abortus was more prevalent than B. melitensis in the area. Results of multivariable Cox regression analysis identified species (camels and cattle) as an important predictor of Brucella spp. exposure in animals. Conclusions: This study estimated an overall brucellosis incidence of 0.024 cases per animal-months at risk with camels and cattle having higher incidence than sheep and goats. These results will inform surveillance studies in the area.Item Using a One Health case-based investigation for improved control of brucellosis in Isiolo, Kenya(Journal Article, 2021-09-21) Karlsson, P.A.; Persson, C.; Akoko, James M.; Bett, Bernard K.; Lundkvist, Å.; Lindahl, Johanna F.Brucella is a highly pathogenic bacteria endemic in Kenya, and in spite of its severity in humans, the highly inadequate Febrile Antigen Brucella Agglutination Test (FBAT) remains a primary tool for its diagnosis. Blood samples were collected from febrile patients in Kinna health center and screened by the local routine. Milk samples were purchased from local milk hawkers and analyzed for Brucella antibodies using the milk ring test (MRT). The MRT-positive milk was traced to farms, and lactating cattle were sampled for milk and blood. Milk was MRT-tested and the serum was analyzed using the Rose Bengal test (RBT) and iELISA. Available patient and farm samples were stored on FTA cards for qPCR analyses. Despite a limited sample size, our study, in line with previous reports, shows a low diagnostic sensitivity (67%) and specificity (40%) of FBAT when compared to qPCR. As many as 48% of the raw bulk cattle milk samples were MRT-positive for Brucella antibodies and 60% of cattle on three visited farms were IS711 qPCR-positive. This case-based One Health investigation confirms the suspected Brucella presence, suggesting a targeted vaccination at high-prevalence farms, urgent interventions on milk safety, and a re-evaluation of the diagnostic and treatment regimen.Item Molecular epidemiology of Brucella species in mixed livestock-human ecosystems in Kenya(Journal Article, 2021-04-23) Akoko, James M.; Pelle, Roger; Lukambagire, A.S.; Machuka, Eunice M.; Nthiwa, D.; Mathew, C.; Fèvre, Eric M.; Bett, Bernard K.; Cook, Elizabeth A.J.; Othero, D.; Bonfoh, Bassirou; Kazwala, R.R.; Shirima, G.; Schelling, E.; Halliday, J.E.B.; Ouma, C.Brucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host–pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0–17.1). Humans aged 21–40 years had higher odds (OR = 2.8, 95% CI 1.2–6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1–4.6) and camels (OR = 2.9, 95% CI 1.3–6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0–6.7) and goats (OR = 1.7, 95% CI 1.0–3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations.Item Serological evidence of single and mixed infections of Rift Valley fever virus, Brucella spp. and Coxiella burnetii in dromedary camels in Kenya(Journal Article, 2021-03-26) Muturi, M.; Akoko, James M.; Nthiwa, D.; Chege, B.; Nyamota, Richard; Mutiiria, M.; Maina, Josphat; Thumbi, Samuel M.; Nyamai, M.; Kahariri, S.; Sitawa, R.; Kimutai, J.; Kuria, W.; Mwatondo, Athman; Bett, Bernard K.Camels are increasingly becoming the livestock of choice for pastoralists reeling from effects of climate change in semi-arid and arid parts of Kenya. As the population of camels rises, better understanding of their role in the epidemiology of zoonotic diseases in Kenya is a public health priority. Rift Valley fever (RVF), brucellosis and Q fever are three of the top priority diseases in the country but the involvement of camels in the transmission dynamics of these diseases is poorly understood. We analyzed 120 camel serum samples from northern Kenya to establish seropositivity rates of the three pathogens and to characterize the infecting Brucella species using molecular assays. We found seropositivity of 24.2% (95% confidence interval [CI]: 16.5-31.8%) for Brucella, 20.8% (95% CI: 13.6-28.1%) and 14.2% (95% CI: 7.9-20.4%) for Coxiella burnetii and Rift valley fever virus respectively. We found 27.5% (95% CI: 19.5-35.5%) of the animals were seropositive for at least one pathogen and 13.3% (95% CI: 7.2-19.4%) were seropositive for at least two pathogens. B. melitensis was the only Brucella spp. detected. The high sero-positivity rates are indicative of the endemicity of these pathogens among camel populations and the possible role the species has in the epidemiology of zoonotic diseases. Considering the strong association between human infection and contact with livestock for most zoonotic infections in Kenya, there is immediate need to conduct further research to determine the role of camels in transmission of these zoonoses to other livestock species and humans. This information will be useful for designing more effective surveillance systems and intervention measures.Item Co-infection with Rift Valley fever virus, Brucella spp. and Coxiella burnetii in humans and animals in Kenya: Disease burden and ecological factors(Presentation, 2019-09-03) Bett, Bernard K.