N4: Rainwater management in the Ethiopian highlands: Assessing and anticipating the consequences of innovation

Permanent URI for this collectionhttps://hdl.handle.net/10568/2300

Browse

Recent Submissions

Now showing 1 - 20 of 42
  • Item
    Economic incentives and natural resource management among small-scale farmers: Addressing the missing link
    (Journal Article, 2014-12) Getnet, Kindie; Pfeifer, Catherine; MacAlister, C.
    Small-scale farmers face numerous challenges to invest in natural resource management practices. The problems are interlinked, with such perverse economic problems as high transaction costs and risk rooted in the lack of comprehensive institutional and organizational services to farmers for risk reduction and incentive creation. Failure to address such a missing link undermines success in natural resource management. This paper ponders the importance of such a missing link and proposes analytic framework that explicitly integrates the economics of natural resource management into institutional and organizational analysis. The framework features the instrumentality of integrated institutional and organizational innovation to create opportunities and incentives to small-scale farmers to encourage investment in natural resource management practices.
  • Item
    Using the Climate Forecast System Reanalysis as weather input data for watershed models
    (Journal Article, 2014-10-30) Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, Tammo S.; Easton, Z.M.
    Obtaining representative meteorological data for watershed-scale hydrological modelling can be difficult and time consuming. Land-based weather stations do not always adequately represent the weather occurring over a watershed, because they can be far from the watershed of interest and can have gaps in their data series, or recent data are not available. This study presents a method for using the Climate Forecast System Reanalysis (CFSR) global meteorological dataset to obtain historical weather data and demonstrates the application to modelling five watersheds representing different hydroclimate regimes. CFSR data are available globally for each hour since 1979 at a 38-km resolution. Results show that utilizing the CFSR precipitation and temperature data to force a watershed model provides stream discharge simulations that are as good as or better than models forced using traditional weather gauging stations, especially when stations are more than 10 km from the watershed. These results further demonstrate that adding CFSR data to the suite of watershed modelling tools provides new opportunities for meeting the challenges of modelling un-gauged watersheds and advancing real-time hydrological modelling.
  • Item
    Impact of small-scale irrigation schemes on household income and the likelihood of poverty in the Lake Tana basin of Ethiopia
    (Book Chapter, 2013-11-01) Ayele, Getaneh K.; Nicholson, C.; Collick, A.S.; Tilahun, Seifu A.; Steenhuis, Tammo S.
    This study uses Tobit and Logit models to examine the impacts of selected small-scale irrigation schemes in the Lake Tana basin of Ethiopia on household income and the likelihood of poverty, respectively. Data for these analyses were collected from a sample of 180 households. Households using any of the four irrigation systems had statistically significantly higher mean total gross household income than households not using irrigation. The marginal impact of small-scale irrigation on gross household income indicated that each small scale-irrigation user increased mean annual household income by ETB 3353 per year, a 27% increase over income for non-irrigating households. A Logit regression model indicated that access to irrigation significantly reduced the odds that a household would be in the lowest quartile of household income, the poverty threshold used in this study. Households using concrete canal river diversion had higher mean cropping income per household than those using other irrigation types. Key challenges to further enhancing the benefits of irrigation in the region include water seepage, equity of water distribution, availability of irrigation equipment, marketing of irrigated crops and crop diseases facilitated by irrigation practices.
  • Item
    Realistic assessment of irrigation potential in the Lake Tana basin, Ethiopia
    (Book Chapter, 2013-11-01) Wale, A.; Collick, A.S.; Rossiter, D.G.; Langan, Simon J.; Steenhuis, Tammo S.
    Although Ethiopia has a large potential to develop irrigation, only 5% of the 3.5 million hectares of land potentially available has been developed. To examine the underlying causes, this study evaluates the suitability of surface water irrigation for the Lake Tana Basin development corridor. Surface water availability and land potentially suitable for medium and large-scale irrigation development (200 ha and larger) was considered. Surface water potential was examined by considering river discharges. Land suitable for irrigation was determined with a GIS-based multi-criteria evaluation (MCE), which considers the interaction of various factors, such as climate, river proximity, soil type, land cover, topography/slope and market outlets. The result indicates that nearly 11% of the Lake Tana Basin is suitable for surface irrigation. However, by analysing 27 years of river discharge, less than 3% of the potential irrigable area (or less than 0.25% of the basin area) could be irrigated consistently by run-of-the river-systems. Thus, the irrigation potential in the Lake Tana Basin can only be met by increasing dry season flows (if proven feasible) and by supplying water from existing or future reservoirs or by using water directly from Lake Tana.
  • Item
    Enhancing farming system water productivity through alternative land use and improved water management of rainfed agriculture in Vertisol areas
    (Book Chapter, 2013-11-01) Erkossa, Teklu; Haileslassie, Amare; MacAlister, C.
    Waterlogged Vertisols are amongst the high potential soils where management interventions could result in positive impacts. This study utilized soil, climate and crop and livestock productivity data and models to demonstrate intensification strategies which increase crop–livestock system productivity and to understand the effects of alternative land use and water management options on water productivity in the Vertisols areas. The areas have been classified into three slope classes including areas where artificial drainage is not feasible, where Broad Bed and Furrows (BBF) can be used to drain the excess water and naturally drained areas, represented by areas with 0–2%, 2–5% and over 5% slope steepness, respectively. Early planting of wheat (Triticum spp) using BBF on drainable areas and rice (Oryza sativa) or grasspea (Lathyrus sativus) on the flat areas were compared with the traditional practices. Yield and biomass data were obtained from research stations in the area whilst the effective rainfall and crop water requirement were estimated using CROPWAT Model. The feed value of the native grass and crop straw was estimated based on previous works. With respect to effective rainfall, the water productivity increase due to BBF over the control ranged from 5 to 200%, with an average increase of 57%. Despite higher water consumption of the rice, feeding its residues to livestock enhanced the overall economic water productivity of the system over the natural grazing or grasspea cultivation. Consequently, use of BBF enables growing high value or food crops of choice that may be sensitive to waterlogging whilst tolerant crops can be grown on flat lands allowing utilization of the full growing period. Coupled with livestock integration into the system, the alternatives can enhance food production and resource use efficiency from these ‘marginal’ areas.
  • Item
    Sustainable intensification of small-scale agriculture in the upper Blue Nile basin: Multicriteria optimization of rainwater management strategies
    (Book Chapter, 2013-11-01) Getnet, Kindie
    Using a multi-criteria optimization technique for system analysis, this paper quantitatively characterizes baseline production activities, resource management and environmental relationships of the mixed crop–livestock farming system at the Jaba micro-watershed, upper Blue Nile Basin, to get insights that inform sustainable intensification of small-scale agriculture. The paper characterizes and models system relationships at a landscape scale under the business as usual land use and resource management scenario (including rainwater management), in the light of social, economic and environmental sustainability indicators (employment, farm income and sediment loss and water generation, respectively). The analysis is based on optimization technique that weighs the socio-economic and environmental costs and benefits of current land use and resource management practices at spatial and temporal scales, using farm level survey data. The results show that, under the business as usual scenario, the crop sub-sector will remain the major source of farm income and rural employment. Agricultural income, though trending positively, will not significantly drift from its current level, indicating the limited possibility for rural income growth from agricultural activities under the current pattern of land use, resource management and socio-economic circumstances. Land has the highest shadow price (while such price is low for labour), showing that land scarcity, unlike abundant labour, limits the possibility for extensive farming and agricultural income growth in the area. The environmental cost of agricultural income growth is considerable, showing a clear trade-off between agricultural income growth and the natural resource base that supports agriculture. The socio-economic and biophysical consequences of alternative innovations towards such end can be simulated by introducing respective scenarios into the quantified baseline relationships. The social, economic and environmental consequences of alternative rainwater management strategies can be simulated for technology selection, prioritization and targeting.
  • Item
    Evaluation of rain water management practices for sediment load reduction in the (semi) humid Blue Nile basin
    (Book Chapter, 2013-11-01) Steenhuis, Tammo S.; Enkamil, M.; Asmare, D.; Tilahun, S.; Yitaferu, B.; Worqlul, Abeyou W.; Zemadim, Birhanu; MacAlister, C.; Baker, T.; Langan, Simon J.
    With the construction of the new Renaissance Dam at the Ethiopian Sudan border, reducing sediment load in the Blue Nile is becoming increasingly important. Past attempts of decreasing sediment concentrations have been only partially successful. In this paper, we will examine the temporal distribution of sediment generation within small watersheds and systematically compare this with the observed sediment concentration at various watershed scales using the Parameter Efficient Distributed (PED) model. The model is based on the concept that runoff and erosion are generated mainly from areas that become saturated during the rain storm. These runoff source areas consist of shallow soils over a dense hardpan or areas where the water table is close to surface. Saturated areas are also prone to gullying. Simulation of watershed evaluations indicate that most erosion occurs from degraded areas, from temporarily saturated agricultural land and from gullies in the saturated bottomlands near the river. In addition, we found that the annual runoff and sediment concentrations increased significantly in the Blue Nile basin at the border with Sudan. The model results would indicate that rehabilitating the degraded and bare areas by planting permanent vegetation and preventing further incision by gullies would be extremely effective in decreasing the sediment concentrations. Reduced tillage would likely result in less sediment transport but would increase use of pesticides and the cattle cannot graze freely anymore. Tentatively, we conclude that decreasing upland erosion might decrease sediment concentration downstream, since there is relatively little sediment storage in the main rivers of the Blue Nile basin.
  • Item
    Hydraulic properties of clay soils as affected by biochar and charcoal amendments
    (Book Chapter, 2013-11-01) Bayabil, H.K.; Lehmann, J.C.; Yitaferu, B.; Stoof, C.; Steenhuis, Tammo S.
    Understanding soil hydraulic properties is crucial for planning effective soil and water management practices. A study was conducted to evaluate the effects of different biochar and charcoal treatments on soil-hydraulic properties of agricultural soils. Biochar and charcoal treatments were applied on 54, undisturbed soil-columns, extracted from three-elevation ranges, with replications along three transects. Daily weight losses of freely draining soil-columns and soil moisture contents, at five tensions, were measured. In addition, field infiltration tests and soil analyses for particle size distribution, bulk-density and organic carbon content were conducted. Moreover, five year event precipitation data, from the watershed, was analysed and exceedance probability of rainfall intensity was computed. Results show treatments reduced soil moisture contents, for most of the cases. However, treatment effects were significant only at lower tensions (10 and 30 kPa) and within two days after saturation (p<0.05). On the other hand, relative hydraulic conductivity (Kr) coefficients, near saturation, of amended soils were higher than the control. Acidic to moderately acidic soils with high average clay (42%) and low organic carbon contents (1.1%) were dominant. Infiltration rate ranged between 1.9 and 36 mm/h, with high variability (CV = 70%). At the same time, storms with short duration (< 15 min) and high average intensity (6.3 mm/h) contributed for 68% of annual precipitation (1616mm/year). Dominant soil properties and rainfall characteristics suggest that infiltration could be a major problem on considerable number of fields, in the watershed. This implies, on such fields, constructing physical soil and water conservation structures alone will not reduce runoff and erosion effectively, unless soil infiltration and permeability rates are enhanced through integrated soil management approaches. 
  • Item
    Factors in the suboptimum performance of rural water supply systems in the Ethiopian highlands
    (Book Chapter, 2013-11-01) Tilahun, Seifu A.; Tigabu, A.D.; Tarekegne, T.M.; Addisie, Meseret B.; Beyene, H.A.; Alemeyehu, Z.A.; Ayele, M.; Collick, A.S.; Steenhuis, Tammo S.
    Access to safe drinking water services in the Ethiopian Highlands is one of lowest worldwide due to failure of water supply services shortly after construction. Over hundred water supply systems were surveyed to find the underlying causes of failure and poor performance throughout the Amhara Regional State. The results show generally that systems with decision-making power at the community level during design and construction remained working longer than when the decisions were made by a central authority. In addition, the sustainability was better for water systems that were farther away from alternative water resources and contributed more cash and labour. The results of this study of the importance of decision-making at the local level in contrast to the central authority is directly applicable to the introduction of rain water management systems as shown by earlier efforts of installing rain water harvesting systems in the Ethiopian highlands.
  • Item
    Management practices and agro-ecological effects on crop water productivity in Meja watershed, Ethiopia
    (Book Chapter, 2013-11-01) Debela, A.A.; Erkossa, Teklu; Zuberi, M.I.
    Mixed crop–livestock farming system is a major livelihood strategy in most sub-Sahara African countries. Low water use efficiency and water scarcity characterize the dominant rainfed agricultural production system in the densely populated highlands of Ethiopia. Improving water productivity in the rainfed system is among the ways of overcoming the water scarcity challenge. This study was conducted in Meja watershed, located in Jeldu district, West Shewa in the Ethiopian part of the Blue Nile Basin to estimate economic crop water productivity based on agro-ecology and crop management practices. The watershed was classified into three landscape positions (local agro-ecologies) and major crops representing at least 70% of each landscape position were identified through discussion with farmers and development agents. Five farmers field were randomly selected for each major crop and crop management practices implemented by the farmers were monitored and yield (grain or tuber and straw) was measured at harvest. The local market value of the crops and the production cost was estimated based on the local market value for labour and other inputs. CROPWAT model was used to estimate effective precipitation based on weather data generated using NewLocClim and crop characteristics. The result indicated that the landscape positions, crop variety and management practices significantly influenced the net economic water productivity. The net economic crop water productivity for barley, wheat, tef, sorghum and maize grains and fresh potato tubers were 3.31, 2.45, 3.09, 3.01 and 5.20 and ETB 13.56 m-3, respectively. Similarly, physical water productivity of the crops ranged from 0.47 for teff to 9.98 kg m-3 for fresh potato tubers. Hence, farmers can enhance economic benefit from the land and water resources they are endowed with rainfed by using improved agronomic practices that could raise grain/tuber and biomass yield. Enhancing improved input use, improving access to market for outputs and integrating livestock with crops may further augment the benefit at system scale.
  • Item
    Arresting gully formation in the Ethiopian highlands
    (Book Chapter, 2013-11-01) Tebebu, Tigist Y.; Zegeye, Assefa D.; Langendoen, E.J.; Ayele, Getaneh K.; Tilahun, Seifu A.; Ayana, Essayas K.; Steenhuis, Tammo S.
    Over the past five decades, gullying has been widespread and has become more severe in the Ethiopian highlands. Only in very few cases, rehabilitation of gullies has been successful in Ethiopia due to the high costs. The objective of this paper is to introduce cost effective measures to arrest gully formation. The research was conducted in the Debre-Mewi watershed located at 30 km south of Bahir Dar, Ethiopia. Gullying started in the 1980s following the clearance of indigenous vegetation and intensive agricultural cultivation, leading to an increase of surface and subsurface runoff from the hillside to the valley bottoms. Gully erosion rates were 10–20 times the measured upland soil losses. Water levels, measured with piezometers, showed that in the actively eroding sections, the water table was in general above the gully bottom and below it in the stabilized sections. In order to develop effective gully stabilizing measures, we tested and then applied the BSTEM and CONCEPT models for their applicability for Ethiopian conditions where active gully formation has been occurring. We found that the model predicted the location of slips and slumps well with the observed groundwater depth and vegetation characteristics. The validated models indicated that any gully rehabilitation project should first stabilize the head cuts. This can be achieved by regrading these head cuts to slope of 40 degrees and armoring it with rock. Head cuts will otherwise move uphill in time and destroy any improvements. To stabilize side walls in areas with seeps, grass will be effective in shallow gullies, while deeper gullies require reshaping of the gullies walls, then planting the gully with grasses, eucalyptus or fruit trees that can be used for income generation. Only then there is an incentive for local farmers to maintain the structures.
  • Item
    Visualizing clogging up of soil pores in tropical degraded soils and their impact on green water productivity
    (Book Chapter, 2013-11-01) Tebebu, Tigist Y.; Baver, C.; Stoof, C.; Steenhuis, Tammo S.
    Restrictive soil layers commonly known as hardpans restrict water and airflow in the soil profile and impede plant root growth below the plough depth. Preventing hardpans to form or ameliorate existing hardpans will allow plants root more deeply, increase water infiltration and reduce runoff, all resulting in greater amounts of water available for the crop (i.e. green water). However, there has been a lack of research on understanding the influence of transported disturbed soil particles (colloids) from the surface to the subsurface to form restrictive soil layers, which is a common occurrence in degraded soils. In this study, we investigated the effect of disturbed soil particles on clogging up of soil pores to form hardpans. Unsaturated sand column experiments were performed by applying 0.04 g/ml soil water solution in two sand textures. For each experiment, soil water solution infiltration process was visualized using a bright field microscope and soil particles remained in the sand column was quantified collecting and measuring leachate at the end of the experiment in the soil and water lab of Cornell University. Preliminary results show that accumulation of significant amount of soil particles occur in between sand particles and at air water interfaces, indicating the clogging of soil pores occurs as a result of disturbed fine soil particles transported from the soil surface to the subsurface.
  • Item
    On-site financial costs of soil erosion by runoff from the Mizewa catchment of the Blue Nile basin
    (Book Chapter, 2013-11-01) Taye, G.; Adgo, E.; Erkossa, Teklu
    This study was conducted in Mizewa watershed which is located in Blue Nile Basin (BNB) to estimate on-site financial cost of erosion in terms of yield reduction taking maize as representative crop. For this purpose, discharge measurement and runoff sampling was made during the rainy season of 2011 at the outlet of three sub watersheds within Mizewa catchment; lower Mizewa (MZ0), Upper Mizewa (MZ1) and Gindenewur (GN0). The samples were filtered to separate the sediment which was subsampled for determination of suspended sediment concentration (SSC), sediment fixed NO3 -, NH4 + and available phosphorous (P) contents. The filtered water was used to assess dissolved nitrate and dissolved phosphate. The on-site financial cost of erosion was estimated based on productivity change approach (PCA) focusing on available NP losses. The result revealed that the SSC and its NP content varied in space and time, in which higher and lower SSC occurred towards the beginning and end of the rainy season, respectively. The mean seasonal discharge was found to be 2.12±0.75, 1.49±0.52 and 0.57±0.20 m3/ sec at MZ0, MZ1 and GN0 stations in that order while the corresponding sediment concentration was 510±370 mg/l, 230±190 mg/l and 370±220 mg/l. This led to the total suspended sediment loss (SSL) of 4 ton/ha/year, 2 ton/ha/year and 3 ton/ha/year from the respective subwatersheds. The on-site financial cost due to N and P lost associated with SSL was estimated to be USD 200/ha, USD 186/ha and USD 227/ha from MZ0, MZ1 and GN0 watersheds, respectively. The study revealed that the economic impacts of soil erosion which is variable based on the characteristics of land resources and management practices are immense and deserve due attention. The result may help in sensitizing both farmers and decision-makers about the risk of soil erosion and in targeting management practices to overcome the challenges.
  • Item
    Characteristics and on-site financial costs of erosion in the Meja watershed of the Abay basin, Ethiopia
    (Book Chapter, 2013-11-01) Desalegn, B.; Erkossa, Teklu
    Most soil erosion studies conducted in Ethiopia are focused on quantification of sediment and lack specific information on temporal and spatial variability of sediment and its associated plant nutrients loss. This study was, therefore quantified and characterized runoff and sediment along with estimated the on-site financial cost of erosion in terms of its concomitant crop yield loss due to the nitrogen and phosphorus lost in consequence of erosion. Data on discharge and runoff samples for sediment concentration and nutrient content was collected at three monitoring stations (Melka, Galesssa and Kollu) in Meja watershed in Jeldu district, in the Ethiopian part of the Blue Nile Basin. Daily samples collected during the rainy season were analysed in the laboratory of Ambo University for sediment content of runoff, particle size distribution of the sediment and nitrogen and phosphorus content of both the sediment and runoff. Preliminary results indicate that both runoff volume and sediment concentration vary with space and time. While the maximum runoff volume was recorded in the middle of the rainy season, sediment concentration decreased towards the end of the rainy season in response to increased ground cover. The average suspended sediment concentration during the rainy season was 3.0 ± 1.1, 2.2 ±1.3 and 1.4 ± 0.9 g L-1 while the total sediment yield ranged from 74 t km-2, 248 t km-2 and 604 t km-2 at Melka, Galesssa and Kollu, respectively. The financial cost of erosion was estimated at 595, 510 and 2475 ETB ha-1 from Melka, Kollu and Galessa, respectively.
  • Item
    Enhancing farming system water productivity through alternative land use and water management in vertisol areas of Ethiopian BlueNile Basin (Abay)
    (Journal Article, 2014-01) Erkossa, Teklu; Haileslassie, Amare; MacAlister, C.
    Until recently, the Ethiopian government’s investment did not systematically target high potential areas for agricultural intensification, limiting the potential productivity gains. Waterlogged vertisols, which cover about 2.7 million hectares in the Ethiopian part of the Blue Nile Basin, are among the high potential soils where management interventions could result in positive impacts. This study utilized soil, climate, crop and livestock productivity data and models to demonstrate intensification strategies which can increase crop-livestock system productivity. To understand the effects of alternative land use and water management interventions on water productivity, the areas have been classified into three drainage status depending on slope classes. Accordingly, non-drainable (0–2%), drainable (2–5%) and naturally drained (>5%) respectively, represented areas where artificial drainage is not feasible, where drainage using broad bed and furrows (BBF) is recommended, and areas where water logging is not a problem and no intervention is needed. Early planting of wheat (Triticum spp.) on BBF instead of the traditional late planting on flat beds in drainable areas and rice (Oryza sativa) cultivation instead of the traditional extensive grazing or growing grass-pea (Lathyrus sativus) on the flat areas provide viable alternative cropping options. Yield data of the crops and biomass of the native grass were obtained from research stations inthe area while the effective rainfall and crop water requirement were estimated using CROPWAT Model.The value of the native grass and crop straw as livestock feed was estimated based on previous works.With respect to effective rainfall, the water productivity increase due to BBF over the control ranged from 5% to 200%, with an average increase of 57%. Despite higher water consumption of rice, feeding its residues to livestock enhanced the overall economic water productivity of the system as compared to the natural grazing or grass-pea cultivation. This can be accounted for by higher rice biomass productivity and the greater demand for its grain. The study demonstrated that draining the excess water when the slope allows, growing suitable high value crops on non-drainable areas, and integration of livestock into improved land and water management enhance overall agricultural system water productivity.
  • Item
    Visualizing clogging up of soil pores in the tropical degraded soils and their impact on green water productivity
    (Poster, 2013-07-09) Yaze, T.; Baver, C.; Stoof, C.; Steenhuis, Tammo S.
  • Item
    Factors in sub-optimum performance of rural water supply (RWS) systems (as lessons learned for rain water management (RWM) systems) in the Ethiopian Highlands
    (Presentation, 2013-07-09) Admassu, S.; Demeke, A.; Mekonen, T.; Belachew, M.; Addis, H.; Aweke, Z.; Ayele, M.; Collick, A.S.; Steenhuis, Tammo S.
  • Item
    The impact of selected small-scale irrigation schemes on household income and the likelihood of poverty in the Lake Tana basin of Ethiopia
    (Presentation, 2013-07-09) Kebede, G.; Nicholson, Charles F.; Collick, A.S.; Admasu, S.; Steenhuis, Tammo S.
  • Item
    Evaluating best management practices for decreasing downstream sediment load in a degrading Blue Nile basin
    (Presentation, 2013-07-09) Steenhuis, Tammo S.; Asmare, D.; Enkamil, M.; Guzmán, Christian D.; Yaze, T.; Kebede, H.; Derebe, A.; Admasu, S.; MacAlister, C.; Langan, Simon J.