Linking biodiversity, ecosystem functions and services in the Serengeti-Mara region, East Africa: Drivers of change, causalities and sustainable management strategies (AfricanBioServices)
Permanent URI for this collectionhttps://hdl.handle.net/10568/69541
Browse
Recent Submissions
Item Multiple pathogens co-exposure and associated risk factors among cattle reared in a wildlife-livestock interface area in Kenya(Journal Article, 2024-07-25) Manyenya, S.; Nthiwa, Daniel; Lutta, H.O.; Muturi, M.; Nyamota, Richard; Mwatondo, A.; Watene, Grace; Akoko, James M.; Bett, Bernard K.Introduction: Understanding multi-pathogen infections/exposures in livestock is critical to inform prevention and control measures against infectious diseases. We investigated the co-exposure of foot-and-mouth disease virus (FMDV), Brucella spp., Leptospira spp., and Coxiella burnetii in cattle in three zones stratified by land use change and with different wildlife-livestock interactions in Narok county, Kenya. We also assessed potential risk factors associated with the transmission of these pathogens in cattle. Methods: We identified five villages purposively, two each for areas with intensive (zone 1) and moderate wildlife-livestock interactions (zone 2) and one for locations with low wildlife-livestock interactions (zone 3). We sampled 1,170 cattle from 390 herds through a cross-sectional study and tested the serum samples for antibodies against the focal pathogens using enzyme-linked immunosorbent assay (ELISA) kits. A questionnaire was administered to gather epidemiological data on the putative risk factors associated with cattle’s exposure to the investigated pathogens. Data were analyzed using the Bayesian hierarchical models with herd number as a random effect to adjust for the within-herd clustering of the various co-exposures among cattle. Results: Overall, 88.0% (95% CI: 85.0–90.5) of the cattle tested positive for at least one of the targeted pathogens, while 41.7% (95% CI: 37.7–45.8) were seropositive to at least two pathogens. FMDV and Brucella spp. had the highest co-exposure at 33.7% (95% CI: 30.9–36.5), followed by FMDV and Leptospira spp. (21.8%, 95% CI: 19.5–24.4), Leptospira spp. and Brucella spp. (8.8%, 95% CI: 7.2–10.6), FMDV and C. burnetii (1.5%, 95% CI: 0.7–2.8), Brucella spp. and C. burnetii (1.0%, 95% CI: 0.3–2.2), and lowest for Leptospira spp. and C. burnetii (0.3%, 95% CI: 0.0–1.2). Cattle with FMDV and Brucella spp., and Brucella spp. and Leptospira spp. co-exposures and those simultaneously exposed to FMDV, Brucella spp. and Leptospira spp. were significantly higher in zone 1 than in zones 2 and 3. However, FMDV and Leptospira spp. co-exposure was higher in zones 1 and 2 than zone 3. Discussion/conclusion: We recommend the establishment of a One Health surveillance system in the study area to reduce the morbidity of the targeted zoonotic pathogens in cattle and the risks of transmission to humans.Item Local and wide-scale livestock movement networks inform disease control strategies in East Africa(Journal Article, 2023-06-14) Ekwem, D.; Enright, J.; Hopcraft, J.G.C.; Buza, J.; Shirima, G.; Shand, M.; Mwajombe, J.K.; Bett, Bernard K.; Reeve, R.; Lembo, T.Livestock mobility exacerbates infectious disease risks across sub-Saharan Africa, but enables critical access to grazing and water resources, and trade. Identifying locations of high livestock traffic offers opportunities for targeted control. We focus on Tanzanian agropastoral and pastoral communities that account respectively for over 75% and 15% of livestock husbandry in eastern Africa. We construct networks of livestock connectivity based on participatory mapping data on herd movements reported by village livestock keepers as well as data from trading points to understand how seasonal availability of resources, land-use and trade influence the movements of livestock. In communities that practise agropastoralism, inter- and intra-village connectivity through communal livestock resources (e.g. pasture and water) was 1.9 times higher in the dry compared to the wet season suggesting greater livestock traffic and increased contact probability. In contrast, livestock from pastoral communities were 1.6 times more connected at communal locations during the wet season when they also tended to move farther (by 3 km compared to the dry season). Trade-linked movements were twice more likely from rural to urban locations. Urban locations were central to all networks, particularly those with potentially high onward movements, for example to abattoirs, livestock holding grounds, or other markets, including beyond national boundaries. We demonstrate how livestock movement information can be used to devise strategic interventions that target critical livestock aggregation points (i.e. locations of high centrality values) and times (i.e. prior to and after the wet season in pastoral and agropastoral areas, respectively). Such targeted interventions are a cost-effective approach to limit infection without restricting livestock mobility critical to sustainable livelihoods.Item Seroprevalence of foot-and-mouth disease virus in cattle herds raised in Maasai Mara ecosystem in Kenya(Journal Article, 2020-03) Nthiwa, D.; Bett, Bernard K.; Odongo, D.; Kenya, E.; Wainaina, M.; Grazioli, S.; Foglia, E.; Brocchi, E.; Alonso, SilviaA cross-sectional study was carried out to determine foot-and-mouth disease (FMD) seroprevalence and identify risk factors of exposure among cattle herds raised in three zones with different types of land use and progressively distant from the Maasai Mara National Reserve (MMNR) boundary. We selected five villages purposively; two in zone 1 (area < 20 km from the MMNR), another two in zone 2 (area between 20-40 km away from the MMNR) and one in zone 3 (area >40 km away from the MMNR). A total of 1,170 cattle sera were collected from 390 herds in all the zones and tested for antibodies against the non-structural proteins (NSPs) of FMD virus (FMDV) using two 3ABC-based Enzyme-Linked Immunosorbent Assay (ELISA) kits. All sera samples were also screened for serotype-specific antibodies using Solid Phase Competitive ELISA (SPCE) kits (IZSLER, Italy). We targeted FMDV serotypes A, O, South African Territory [SAT] 1 and SAT 2, known to be endemic in East Africa including Kenya. Data on putative risk factors for FMD seropositivity in cattle were collected using a questionnaire. The overall apparent animal-level FMD seroprevalence based on the parallel comparison of the two anti-NSPs ELISA kits was 83.8% (95% CI; 81.8–85.9), and differed significantly across zones. Zone 1 had a higher seroprevalence than zones 2 and 3 (χ2 = 116.1, df = 2, p < 0.001). In decreasing order, the overall seroprevalences of FMDV serotypes A, SAT 2, O and SAT 1 were 26.3% (95% CI; 23.5-29.2), 21.4% (95% CI; 18.8-24.0), 21.2% (95% CI; 18.7-23.9) and 13.1% (95% CI; 11.1-15.3), respectively. The distribution of these serotypes differed significantly between zones (p < 0.05) except for SAT 2 serotype (χ2 = 0.90, df = 2, p = 0.639). Both serotypes A and O were more prevalent in zones 1 and 2 than zone 3 while serotype SAT 1, was higher in zone 3 compared to other zones. The results of multivariable analyses identified animal sex (i.e., female), raising of cattle in zones 1 and 2 (areas < 40 km away from the MMNR); mixing of cattle from multiple herds at watering points, and pastoral husbandry practices, as significant predictors of animal-level FMD seropositivity. This study established that FMD seroprevalence declined with distance from the MMNR.Item Zoonotic pathogen seroprevalence in cattle in a wildlife–livestock interface, Kenya(Journal Article, 2019-12) Nthiwa, D.; Alonso, Silvia; Odongo, D.; Kenya, E.; Bett, Bernard K.A cross-sectional study was conducted to determine the seroprevalence of Brucella spp. and Leptospira spp. and risk factors of exposure in cattle in three zones with varying land use types and wildlife–livestock interactions. Five villages were selected purposively; two in areas with intensive livestock–wildlife interactions (zone 1), another two in areas with moderate livestock–wildlife interactions (zone 2) and one in areas where wildlife–livestock interactions are rarer (zone 3). Sera samples were collected from 1170 cattle belonging to 390 herds in all the zones and tested for antibodies against Brucella abortus and Leptospira interrogans serovar hardjo using ELISA kits. Data on putative risk factors for seropositivity of these pathogens in cattle were collected using a questionnaire. The overall apparent animal-level seroprevalence of brucellosis and leptospirosis was, respectively, 36.9% (95% CI 34.1–39.8) and 23.5% (95% CI 21.1–26.0). Brucella spp. seroprevalence was higher in zone 1 than in zones 2 and 3 (χ2 = 25.1, df = 2, P < 0.001). Zones 1 and 2 had significantly higher Leptospira spp. seroprevalence than zone 3 (χ2 = 7.0, df = 2, P = 0.029). Results of multivariable analyses identified animal sex (female) and zones (high interface area) as significant predictors (P < 0.05) of animal-level seropositivity of Brucella spp. For Leptospira spp., important predictors of animal-level seropositivity were animal sex (female), zones (moderate interface area) and herds utilizing a communal grazing reserve. The seroprevalences of Brucella spp. and Leptospira spp. in cattle were higher in areas with moderate to high wildlife–livestock interactions than those with rare interactions.Item A participatory epidemiological study of major cattle diseases amongst Maasai pastoralists living in wildlife-livestock interfaces in Maasai Mara, Kenya(Journal Article, 2019-06) Nthiwa, Daniel; Alonso, Silvia; Odongo, David O.; Kenya, Eucharia; Bett, Bernard K.Livestock-wildlife interactions promote the transmission of a wide range of infectious diseases that constraint livestock production. We used a participatory appraisal approach to find out and rank infectious diseases of concern to pastoralists in a zone of intense wildlife-livestock interaction and another zone with limited interactions. Four villages were selected purposively in areas with intensive cattle-wildlife interactions (zone 1), and another two in areas with low to moderate cattle-wildlife interactions (zone 2). Data were collected in focus group discussions (FGDs) using participatory epidemiological methods (PE); each group had 8–13 participants. Results of impact matrix scoring from all sites indicated that malignant catarrhal fever (MCF), anthrax, foot and mouth disease (FMD), contagious bovine pleuropneumonia (CBPP), east coast fever (ECF) and African animal trypanosomiasis (ATT), in decreasing order, had the highest impact on livestock production. A Kruskal–Wallis test revealed a significant difference in FMD annual prevalence between cattle age groups (p < 0.001) and was the highest in animals > 4 years (median score of 32.5, range, 10–50). FMD had the highest impact on milk production, but based on veterinary costs (treatment costs), it was ranked second to CBPP. The study provides information on disease priorities that occur in the target zones in Mara ecosystem and which the local pastoralists must consider when accessing key ecosystem services such as water and pasture.Item Sero-epidemiological investigation of foot and mouth disease in cattle at the livestock–wildlife interface in Maasai Mara, Kenya(Poster, 2018-11-12) Nthiwa, D.; Alonso, Silvia; Odongo, David O.; Kenya, E.; Bett, Bernard K.Item AfricanBioServices Updates: Issue 6(Newsletter, 2018-09-15) AfricanBioServices ProjectItem AfricanBioServices Updates: Issue 5(Newsletter, 2018-03-15) AfricanBioServices ProjectItem Brucella seroprevalence in cattle near a wildlife reserve in Kenya(Journal Article, 2017-12) Enström, S.; Nthiwa, D.; Bett, Bernard K.; Karlsson, A.; Alonso, Silvia; Lindahl, Johanna F.Objectives Brucellosis is caused by bacteria from the genus Brucella which infect human and domestic animals as well as wildlife. The Maasai Mara National Reserve has vast populations of wild ruminants such as buffaloes and wildebeest which could contribute to the risk of brucellosis in livestock, and the surrounding pastoralist communities grazing cattle in and around the reserve may be exposed to a higher risk of zoonotic diseases like brucellosis due to the close contact with livestock. In this study, cattle from three villages at varying distance from the reserve, were screened for antibodies against Brucella abortus. Results In total, 12.44% of 225 sampled animals were seropositive, with more females (15%) infected than males (5%). Seroprevalence was higher in livestock closer to Maasai Mara with the cattle in the village Mara Rianta having an odds ratio of 7.03 compared to Endoinyo Narasha further away (95% CI 1.4–11.1, p = 0.003), suggesting that a closer contact with wildlife may increase the circulation of infectious diseases between livestock and wildlife. Symptoms consistent with brucellosis were reported to occur in both humans and animals, and we thus conclude that brucellosis may be an important problem, both for the health and the economy.Item AfricanBioServices Updates: Issue 4(Newsletter, 2017-09-15) AfricanBioServices ProjectItem Trade-offs for climate-resilient pastoral livelihoods in wildlife conservancies in the Mara ecosystem, Kenya(Journal Article, 2017-12) Bedelian, Claire; Ogutu, Joseph O.Pastoralists in the wildlife-rich East African rangelands use diversification into conservation and tourism as a strategy to supplement livestock-based livelihoods and to spread risk. Tourism incomes are an important alternative source during drought, when livestock incomes decline. However, tourism may also reduce access to rangeland resources, and an abundant wildlife may destroy crops and injure, kill or transmit disease to livestock or people. This paper investigates the ability of wildlife conservancies in the Mara, Kenya, to act as an alternative for pastoralists that mitigates risks and maintains resilience in a changing climate. It analyses data to examine how conservancies contribute to and integrate with pastoral livelihoods, and to understand how pastoralists are managing their livestock herds in response to conservancies. It finds conservancy payments can provide an important, reliable, all-year-round source of income and prevent households from selling their animals during stress and for cash needs. Conservancies also retain grass banks during the dry season and provide opportunities for pastoralists to access good-quality forage. However, they reduce access to large areas of former grazing land and impose restrictions on livestock mobility. This affects the ability of pastoralists to remain flexible and able to access seasonally variable resources. Conflicts between grazing and conservancies may also heighten during drought times. Furthermore, income from land leases is not more than the contribution of livestock, meaning conservancy land leases create trade-offs for livestock-based livelihoods. Also, income is based on land ownership, which has inequity implications: women and other marginalised groups are left out.Item AfricanBioServices Updates: Issue 3(Newsletter, 2017-02) AfricanBioServices ProjectItem AfricanBioServices Updates: Issue 1(Newsletter, 2015-12-15) AfricanBioServices ProjectItem AfricanBioServices Updates: Issue 2(Newsletter, 2016-07-15) AfricanBioServices ProjectItem Are ecosystem services important for your well-being?(Brochure, 2017-01-04) AfricanBioServices ProjectItem Huduma za mfumo ikolojia ni muhimu kwa ustawi wa maisha jamii?(Brochure, 2017-01-04) AfricanBioServices ProjectItem Wildlife population dynamics in human-dominated landscapes under community-based conservation: The example of Nakuru Wildlife Conservancy, Kenya(Journal Article, 2017) Ogutu, Joseph O.; Kuloba, B.; Piepho, Hans-Peter; Kanga, E.Wildlife conservation is facing numerous and mounting challenges on private and communal lands in Africa, including in Kenya. We analyze the population dynamics of 44 common wildlife species in relation to rainfall variation in the Nakuru Wildlife Conservancy (NWC), located in the Nakuru-Naivasha region of Kenya, based on ground total counts carried out twice each year from March 1996 to May 2015. Rainfall in the region was quasi-periodic with cycle periods dependent on the rainfall component and varying from 2.8 years for the dry season to 10.9 years for the wet season. These oscillations are associated with frequent severe droughts and food scarcity for herbivores. The trends for the 44 wildlife species showed five general patterns during 1996–2015. 1) Steinbuck, bushbuck, hartebeest and greater kudu numbers declined persistently and significantly throughout 1996–2015 and thus merit the greatest conservation attention. 2) Klipspringer, mongoose, oribi, porcupine, cheetah, leopard, ostrich and Sykes monkey numbers also decreased noticeably but not significantly between 1996 and 2015. 3) Dik dik, eland, African hare, Jackal, duiker, hippo and Thomson’s gazelle numbers first increased and then declined between 1996 and 2015 but only significantly for duiker and hippo. 4) Aardvark, serval cat, colobus monkey, bat-eared fox, reedbuck, hyena and baboon numbers first declined and then increased but only the increases in reedbuck and baboon numbers were significant. 5) Grant’s gazelle, Grevy’s zebra, lion, spring hare, Burchell’s zebra, bushpig, white rhino, rock hyrax, topi, oryx, vervet monkey, guinea fowl, giraffe, and wildebeest numbers increased consistently between 1996 and 2015. The increase was significant only for rock hyrax, topi, vervet monkey, guinea fowl, giraffe and wildebeest. 6) Impala, buffalo, warthog, and waterbuck, numbers increased significantly and then seemed to level off between 1996 and 2015. The aggregate biomass of primates and carnivores increased overall whereas that of herbivores first increased from 1996 to 2006 and then levelled off thereafter. Aggregate herbivore biomass increased linearly with increasing cumulative wet season rainfall. The densities of the 30 most abundant species were either strongly positively or negatively correlated with cumulative past rainfall, most commonly with the early wet season component. The collaborative wildlife conservation and management initiatives undertaken on the mosaic of private, communal and public lands were thus associated with increase or no decrease in numbers of 32 and decrease in numbers of 12 of the 44 species. Despite the decline by some species, effective community-based conservation is central to the future of wildlife in the NWC and other rangelands of Kenya and beyond and is crucially dependent on the good will, effective engagement and collective action of local communities, working in partnerships with various organizations, which, in NWC, operated under the umbrella of the Nakuru Wildlife Forum.Item Effects of climate change on the occurrence and distribution of livestock diseases(Journal Article, 2017-02) Bett, Bernard K.; Kiunga, P.; Gachohi, John M.; Sindato, C.; Mbotha, D.; Robinson, Timothy P.; Lindahl, Johanna F.; Grace, DeliaItem Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: What are the causes?(Journal Article, 2016-09-27) Ogutu, Joseph O.; Piepho, Hans-Peter; Said, Mohammed Yahya; Ojwang, G.O.; Njino, L.W.; Kifugo, S.C.; Wargute, P.W.There is growing evidence of escalating wildlife losses worldwide. Extreme wildlife losses have recently been documented for large parts of Africa, including western, Central and Eastern Africa. Here, we report extreme declines in wildlife and contemporaneous increase in livestock numbers in Kenya rangelands between 1977 and 2016. Our analysis uses systematic aerial monitoring survey data collected in rangelands that collectively cover 88% of Kenya’s land surface. Our results show that wildlife numbers declined on average by 68% between 1977 and 2016. The magnitude of decline varied among species but was most extreme (72–88%) and now severely threatens the population viability and persistence of warthog, lesser kudu, Thomson’s gazelle, eland, oryx, topi, hartebeest, impala, Grevy’s zebra and waterbuck in Kenya’s rangelands. The declines were widespread and occurred in most of the 21 rangeland counties. Likewise to wildlife, cattle numbers decreased (25.2%) but numbers of sheep and goats (76.3%), camels (13.1%) and donkeys (6.7%) evidently increased in the same period. As a result, livestock biomass was 8.1 times greater than that of wildlife in 2011–2013 compared to 3.5 times in 1977–1980. Most of Kenya’s wildlife (ca. 30%) occurred in Narok County alone. The proportion of the total “national” wildlife population found in each county increased between 1977 and 2016 substantially only in Taita Taveta and Laikipia but marginally in Garissa and Wajir counties, largely reflecting greater wildlife losses elsewhere. The declines raise very grave concerns about the future of wildlife, the effectiveness of wildlife conservation policies, strategies and practices in Kenya. Causes of the wildlife declines include exponential human population growth, increasing livestock numbers, declining rainfall and a striking rise in temperatures but the fundamental cause seems to be policy, institutional and market failures. Accordingly, we thoroughly evaluate wildlife conservation policy in Kenya. We suggest policy, institutional and management interventions likely to succeed in reducing the declines and restoring rangeland health, most notably through strengthening and investing in community and private wildlife conservancies in the rangelands.Item Trade-offs for climate-resilient pastoral livelihoods in wildlife conservancies in the Mara Ecosystem, Kenya: Small Grants Programme(Report, 2016-06-27) Bedelian, Claire; Ogutu, Joseph O.