Assessing the biophysical factors affecting irrigation performance in rice cultivation using remote sensing derived information

cg.contributor.affiliationUniversity of Uludagen
cg.contributor.affiliationAfrica Rice Centeren
cg.contributor.affiliationUniversity of Southern Queenslanden
cg.contributor.affiliationInternational Water Management Instituteen
cg.contributor.affiliationInstitut de l'Environnement et Recherches Agricolesen
cg.contributor.donorPresidency for Turks Abroad and Related Communities (YTB) Funden
cg.coverage.countryBurkina Faso
cg.coverage.iso3166-alpha2BF
cg.coverage.regionSub-Saharan Africa
cg.coverage.subregionKou Valley Irrigation Scheme
cg.creator.identifierElliott Dossou-Yovo: 0000-0002-3565-8879en
cg.creator.identifierSander J. Zwart: 0000-0002-5091-1801en
cg.identifier.doihttps://doi.org/10.1016/j.agwat.2022.108124en
cg.identifier.iwmilibraryH052098en
cg.isijournalISI Journalen
cg.issn0378-3774en
cg.journalAgricultural Water Managementen
cg.reviewStatusPeer Reviewen
cg.volume278en
dc.contributor.authorSawadogo, A.en
dc.contributor.authorDossou-Yovo, Elliott Ronalden
dc.contributor.authorKouadio, L.en
dc.contributor.authorZwart, Sander J.en
dc.contributor.authorTraoré, F.en
dc.contributor.authorGundogdu, K. S.en
dc.date.accessioned2023-08-01T11:36:42Zen
dc.date.available2023-08-01T11:36:42Zen
dc.identifier.urihttps://hdl.handle.net/10568/131365
dc.titleAssessing the biophysical factors affecting irrigation performance in rice cultivation using remote sensing derived informationen
dcterms.abstractIdentifying the biophysical factors that affect the performance of irrigated crops in semi-arid conditions is pivotal to the success of profitable and sustainable agriculture under variable climate conditions. In this study, soil physical and chemical variables and plots characteristics were used through linear mixed and random forestbased modeling to evaluate the determinants of actual evapotranspiration (ETa) and crop water productivity (CWP) in rice in the Kou Valley irrigated scheme in Burkina Faso. Multi-temporal Landsat images were used within the Python module for the Surface Energy Balance Algorithm for Land model to calculate rice ETa and CWP during the dry seasons of 2013 and 2014. Results showed noticeable spatial variations in PySEBAL-derived ETa and CWP in farmers’ fields during the study period. The distance between plot and irrigation scheme inlet (DPSI), plot elevation, sand and silt contents, soil total nitrogen, soil extractable potassium and zinc were the main factors affecting variabilities in ETa and CWP in the farmers’ fields, with DPSI being the top explanatory variable. There was generally a positive association, up to a given threshold, between ETa and DPSI, sand and silt contents and soil extractable zinc. For CWP the association patterns for the top six predictors were all non-monotonic; that is a mix of increasing and decreasing associations of a given predictor to either an increase or a decrease in CWP. Our results indicate that improving irrigated rice performance in the Kou Valley irrigation scheme would require growing more rice at lower altitudes (e.g. < 300 m above sea level) and closer to the scheme inlet, in conjunction with a good management of nutrients such as nitrogen and potassium through fertilization.en
dcterms.accessRightsOpen Access
dcterms.available2023-01-09en
dcterms.bibliographicCitationSawadogo, A.; Dossou-Yovo, E. R.; Kouadio, L.; Zwart, Sander J.; Traore, F.; Gundogdu, K. S. 2023. Assessing the biophysical factors affecting irrigation performance in rice cultivation using remote sensing derived information. Agricultural Water Management, 278:108124. [doi: https://doi.org/10.1016/j.agwat.2022.108124]en
dcterms.extent278:108124.en
dcterms.issued2023-03en
dcterms.languageen
dcterms.licenseCC-BY-NC-ND-4.0
dcterms.publisherElsevieren
dcterms.subjectirrigation schemesen
dcterms.subjectperformanceen
dcterms.subjectirrigated riceen
dcterms.subjectbiophysicsen
dcterms.subjectremote sensingen
dcterms.subjectcropsen
dcterms.subjectwater productivityen
dcterms.subjectsoil physical propertiesen
dcterms.subjectchemical propertiesen
dcterms.subjectsustainable agricultureen
dcterms.subjectenergy balanceen
dcterms.subjectevapotranspirationen
dcterms.subjectsatellite imageryen
dcterms.subjectmodellingen
dcterms.subjectmachine learningen
dcterms.typeJournal Article

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: