Artificial intelligence, systemic risks, and sustainability

cg.authorship.typesCGIAR and advanced research instituteen
cg.contributor.affiliationRoyal Swedish Academy of Sciencesen
cg.contributor.affiliationStockholm Resilience Centreen
cg.contributor.affiliationPrinceton Universityen
cg.contributor.affiliationUniversity College Londonen
cg.contributor.affiliationGlobal Catastrophic Risk Instituteen
cg.contributor.affiliationPennsylvania State Universityen
cg.contributor.affiliationLeuphana Universitaet Lueneburgen
cg.contributor.affiliationMedical University of Viennaen
cg.contributor.affiliationNew Schoolen
cg.contributor.affiliationCornell Universityen
cg.contributor.affiliationCGIAR Platform for Big Data in Agricultureen
cg.contributor.affiliationInternational Center for Tropical Agricultureen
cg.contributor.affiliationUniversity of Cambridgeen
cg.contributor.affiliationGraz University of Technologyen
cg.contributor.affiliationUniversidad ICESIen
cg.contributor.affiliationCary Institute of Ecosystem Studiesen
cg.contributor.affiliationStockholm Environment Instituteen
cg.contributor.crpBig Data
cg.contributor.crpClimate Change, Agriculture and Food Security
cg.creator.identifierDaniel Jiménez: 0000-0003-4218-4306en
cg.creator.identifierBrian King: 0000-0002-7056-9214en
cg.identifier.doihttps://doi.org/10.1016/j.techsoc.2021.101741en
cg.isijournalISI Journalen
cg.issn0160-791Xen
cg.journalTechnology in Societyen
cg.reviewStatusPeer Reviewen
cg.subject.alliancebiovciatSTANDARDSen
cg.subject.impactAreaClimate adaptation and mitigation
cg.subject.sdgSDG 8 - Decent work and economic growthen
cg.subject.sdgSDG 9 - Industry, innovation and infrastructureen
cg.subject.sdgSDG 16 - Peace, justice and strong institutionsen
cg.volume67en
dc.contributor.authorGalaz, Victoren
dc.contributor.authorCenteno, Miguel Aen
dc.contributor.authorCallahan, Peter W.en
dc.contributor.authorCausevic, Amaren
dc.contributor.authorPatterson, Thayeren
dc.contributor.authorBrass, Irinaen
dc.contributor.authorBaum, Sethen
dc.contributor.authorFarber, Darrylen
dc.contributor.authorFischer, Joernen
dc.contributor.authorGarcia, Daviden
dc.contributor.authorMcPhearson, Timonen
dc.contributor.authorJiménez, Danielen
dc.contributor.authorKing, Brianen
dc.contributor.authorLarcey, Paulen
dc.contributor.authorLevy, Karenen
dc.date.accessioned2021-09-21T16:20:04Zen
dc.date.available2021-09-21T16:20:04Zen
dc.identifier.urihttps://hdl.handle.net/10568/115075
dc.titleArtificial intelligence, systemic risks, and sustainabilityen
dcterms.abstractAutomated decision making and predictive analytics through artificial intelligence, in combination with rapid progress in technologies such as sensor technology and robotics are likely to change the way individuals, communities, governments and private actors perceive and respond to climate and ecological change. Methods based on various forms of artificial intelligence are already today being applied in a number of research fields related to climate change and environmental monitoring. Investments into applications of these technologies in agriculture, forestry and the extraction of marine resources also seem to be increasing rapidly. Despite a growing interest in, and deployment of AI-technologies in domains critical for sustainability, few have explored possible systemic risks in depth. This article offers a global overview of the progress of such technologies in sectors with high impact potential for sustainability like farming, forestry and the extraction of marine resources. We also identify possible systemic risks in these domains including a) algorithmic bias and allocative harms; b) unequal access and benefits; c) cascading failures and external disruptions, and d) trade-offs between efficiency and resilience. We explore these emerging risks, identify critical questions, and discuss the limitations of current governance mechanisms in addressing AI sustainability risks in these sectors.en
dcterms.accessRightsOpen Access
dcterms.available2021-09-17en
dcterms.bibliographicCitationGalaz, V.; Centeno, M.A.; Callahan, P.W.; Causevic, A.; Patterson, T.; Brass, I.; Baum, S.; Farber, D.; Fischer, J.; Garcia, D.; McPhearson, T.; Jiménez, D.; King, B.; Larcey, P.; Levy, K. (2021) Artificial intelligence, systemic risks, and sustainability. Technology in Society 67: 101741. 10 p. ISSN: 0160-791Xen
dcterms.extent10 p.en
dcterms.issued2021-11en
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.publisherElsevieren
dcterms.subjectartificial intelligenceen
dcterms.subjectclimate changeen
dcterms.subjectsustainabilityen
dcterms.subjectresilienceen
dcterms.subjectautomationen
dcterms.subjectrisk analysisen
dcterms.subjectinteligencia artificialen
dcterms.subjectcambio del climaen
dcterms.subjectsostenibilidaden
dcterms.subjecteducationen
dcterms.typeJournal Article

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Galaz_etal_2021_AI.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: