Real-time media analysis using large language model (LLM) for the top 5 prioritized pests and diseases

cg.authorship.typesCGIAR single centreen_US
cg.authorship.typesCGIAR and advanced research instituteen_US
cg.contributor.affiliationInternational Food Policy Research Instituteen_US
cg.contributor.affiliationUniversity of Sheffielden_US
cg.contributor.donorCGIAR Trust Funden_US
cg.contributor.initiativePlant Healthen_US
cg.creator.identifierSoonho Kim: 0000-0002-9417-1040en_US
cg.creator.identifierYanyan Liu: 0000-0001-7553-2464en_US
cg.howPublishedGrey Literatureen_US
cg.identifier.projectIFPRI - Food Security Portalen_US
cg.identifier.projectIFPRI - Markets, Trade, and Institutions Uniten_US
cg.identifier.publicationRankNot rankeden_US
cg.placeWashington, DCen_US
cg.reviewStatusInternal Reviewen_US
cg.subject.actionAreaResilient Agrifood Systemsen_US
cg.subject.impactAreaEnvironmental health and biodiversityen_US
dc.contributor.authorKim, Soonhoen_US
dc.contributor.authorSong, Xingyien_US
dc.contributor.authorPark, Boyeongen_US
dc.contributor.authorKo, Daeunen_US
dc.contributor.authorLiu, Yanyanen_US
dc.date.accessioned2025-01-31T21:20:35Zen_US
dc.date.available2025-01-31T21:20:35Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/172706en_US
dc.titleReal-time media analysis using large language model (LLM) for the top 5 prioritized pests and diseasesen_US
dcterms.abstractThis report presents a comprehensive overview of the real-time media analysis system developed to assess risks associated with the top five prioritized pests and diseases affecting crops. The activity, under Work Package 2 of the CGIAR Research Initiative on Plant Health, utilizes advanced text mining and machine learning techniques, including a Large Language Model (LLM), to process and analyze media articles. Key achievements include the development of an automated media analysis pipeline to monitor pests and diseases globally, the integration of GPT-4 to classify and extract detailed information from news articles, the creation of a public, interactive Crop Disease Dashboard providing real-time insights, the implementation of a cloud-based interface and REST API for user-friendly interaction and integration, and the ongoing refinement of the system based on human verification and feedback. This innovative approach aims to strengthen crop health monitoring and support policymakers and researchers in mitigating the risks posed by crop diseases and pests.en_US
dcterms.accessRightsOpen Accessen_US
dcterms.audienceScientistsen_US
dcterms.bibliographicCitationKim, Soonho; Song, Xingyi; Park, Boyeong; Ko, Daeun; and Liu, Yanyan. 2024. Real-time media analysis using large language model (LLM) for the top 5 prioritized pests and diseases. Washington, DC: International Food Policy Research Institute. https://hdl.handle.net/10568/172706en_US
dcterms.extent10 p.en_US
dcterms.issued2024-12-31en_US
dcterms.languageenen_US
dcterms.licenseCC-BY-4.0en_US
dcterms.publisherInternational Food Policy Research Instituteen_US
dcterms.relationhttps://hdl.handle.net/10568/138891en_US
dcterms.subjectartificial intelligenceen_US
dcterms.subjectlarge language modelsen_US
dcterms.subjectpostharvest controlen_US
dcterms.subjectplant diseasesen_US
dcterms.subjectplant disease controlen_US
dcterms.typeReporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Real-time Media Analysis using Large.pdf
Size:
491.37 KB
Format:
Adobe Portable Document Format
Description:
Report

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: