Detection of Fall Armyworm infestation in maize fields during vegetative growth stages using temporal Sentinel-2

cg.contributor.affiliationUniversity of Twenteen
cg.contributor.affiliationUniversity of the Western Capeen
cg.contributor.affiliationInternational Maize and Wheat Improvement Centeren
cg.contributor.affiliationDepartment of Agricultural Extension, Bangladeshen
cg.contributor.affiliationBangladesh Wheat and Maize Research Instituteen
cg.contributor.donorCGIAR Trust Funden
cg.contributor.donorUnited States Agency for International Developmenten
cg.contributor.initiativeTransforming Agrifood Systems in South Asia
cg.creator.identifierTimothy Dube: 0000-0003-3456-8991
cg.creator.identifierT.S Amjath-Babu: 0000-0001-9902-7104
cg.creator.identifierMustafa Kamal: 0000-0003-0473-5322
cg.creator.identifierMd. Harun-Or-Rashid: 0000-0001-8890-1396
cg.creator.identifierTimothy Joseph Krupnik: 0000-0001-6973-0106
cg.howPublishedFormally Publisheden
cg.identifier.doihttps://doi.org/10.1016/j.jag.2025.104516en
cg.isijournalISI Journalen
cg.issn1569-8432en
cg.issn1872-826Xen
cg.journalInternational Journal of Applied Earth Observation and Geoinformationen
cg.reviewStatusPeer Reviewen
cg.subject.actionAreaResilient Agrifood Systems
cg.subject.impactAreaNutrition, health and food security
dc.contributor.authorDzurume, Tatendaen
dc.contributor.authorDarvishzadeh, Roshanaken
dc.contributor.authorDube, Timothyen
dc.contributor.authorAmjath Babu, T.S.en
dc.contributor.authorBillah, Mutasimen
dc.contributor.authorSyed Nurul Alamen
dc.contributor.authorKamal, Mustafaen
dc.contributor.authorMd. Harun-Or-Rashiden
dc.contributor.authorBiswas, Badal Chandraen
dc.contributor.authorMd. Ashraf Uddinen
dc.contributor.authorMd. Abdul Muyeeden
dc.contributor.authorMd Mostafizur Rahman Shahen
dc.contributor.authorKrupnik, Timothy J.en
dc.contributor.authorNelson, Andrewen
dc.date.accessioned2025-04-29T15:14:56Zen
dc.date.available2025-04-29T15:14:56Zen
dc.identifier.urihttps://hdl.handle.net/10568/174380
dc.titleDetection of Fall Armyworm infestation in maize fields during vegetative growth stages using temporal Sentinel-2en
dcterms.abstractFall Armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), poses a significant risk to global food and income security by attacking various crops, particularly maize. Early detection and management of FAW infestation are crucial for mitigating its impact on crop yields. This study investigated the effect of FAW infestation on the spectral signature of maize fields and classified infestation severity in Bangladesh using Sentinel-2 satellite imagery and Random Forest (RF) classification. Field observations on FAW infestation severity (none, moderate, and severe), collected by the Bangladesh Department of Agricultural Extension during 2019 and 2020, were used to train the RF classifier. Six thousand nine hundred ninety-eight observations were collected from 579 maize fields through weekly scouting. The Kruskal-Wallis test and Dunn’s post-hoc test were applied to identify the most significant spectral bands (P < 0.05) for detecting FAW incidence and severity across different maize growth stages. The results demonstrated that the spectral reflectance from Sentinel-2 bands varied significantly among different classes of FAW infestation, with noticeable differences observed during the early developmental stages of maize (vegetative growth stages 3 to 8). RF identified nine spectral bands and two spectral vegetation indices as important for FAW infestation discrimination. The RF classifier was evaluated using five-fold cross-validation, achieving an overall accuracy between 74 % and 84 %. The independent test set’s accuracy ranged from 72 % to 82 %. The mean multiclass AUC ranged from 0.83 to 0.95. Moreover, the results demonstrated the feasibility of detecting the severity of FAW infestation using temporal Sentinel-2 data and machine learning techniques. These findings underscore the potential of remote sensing and machine learning techniques for effectively monitoring and managing crop pests. The study provides valuable insights for classifying FAW infestation using high-resolution multitemporal data.en
dcterms.accessRightsOpen Access
dcterms.available2025-04-02
dcterms.bibliographicCitationDzurume, T., Darvishzadeh, R., Dube, T., Babu, T. S. A., Billah, M., Alam, S. N., Kamal, M., Harun-Or-Rashid, Md., Biswas, B. C., Uddin, Md. A., Muyeed, Md. A., Rahman Shah, Md. M., Krupnik, T. J., & Nelson, A. (2025). Detection of Fall Armyworm infestation in maize fields during vegetative growth stages using temporal Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 139, 104516. https://doi.org/10.1016/j.jag.2025.104516en
dcterms.hasVersionhttps://hdl.handle.net/10883/35607en
dcterms.issued2025-05
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.subjectpest insectsen
dcterms.subjectmaizeen
dcterms.subjectremote sensingen
dcterms.subjectpest managementen
dcterms.subjectfall armywormsen
dcterms.typeJournal Article

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
68724.pdf
Size:
6.69 MB
Format:
Adobe Portable Document Format
Description:
https://hdl.handle.net/10883/35607

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: