Comparison of two synergy approaches for hybrid cropland mapping
cg.authorship.types | CGIAR single centre | en |
cg.authorship.types | CGIAR and developing country institute | en |
cg.contributor.donor | National Natural Science Foundation of China | en |
cg.contributor.donor | National Key Research and Development Program, China | en |
cg.contributor.donor | Fundamental Research Funds for Central Non-profit Scientific Institution | en |
cg.contributor.donor | Chinese Academy of Agricultural Sciences | en |
cg.creator.identifier | Yating Ru: 0000-0001-9071-0687 | |
cg.identifier.doi | https://doi.org/10.3390/rs11030213 | en |
cg.identifier.project | IFPRI - Environment and Production Technology Division | |
cg.identifier.publicationRank | B | |
cg.isijournal | ISI Journal | en |
cg.issn | 2072-4292 | en |
cg.issue | 3 | en |
cg.journal | Remote Sensing | en |
cg.reviewStatus | Peer Review | en |
cg.volume | 11 | en |
dc.contributor.author | Chen, Di | en |
dc.contributor.author | Lu, Miao | en |
dc.contributor.author | Zhou, Qingbo | en |
dc.contributor.author | Xiao, Jingfeng | en |
dc.contributor.author | Ru, Yating | en |
dc.contributor.author | Wei, Yanbing | en |
dc.contributor.author | Wu, Wenbin | en |
dc.date.accessioned | 2024-06-21T09:07:46Z | en |
dc.date.available | 2024-06-21T09:07:46Z | en |
dc.identifier.uri | https://hdl.handle.net/10568/146615 | |
dc.title | Comparison of two synergy approaches for hybrid cropland mapping | en |
dcterms.abstract | Cropland maps at regional or global scales typically have large uncertainty and are also inconsistent with each other. The substantial uncertainty in these cropland maps limits their use in research and management efforts. Many synergy approaches have been developed to generate hybrid cropland maps with higher accuracy from existing cropland maps. However, few studies have compared the advantages, disadvantages, and regional suitability of these approaches. To close this knowledge gap, this study aims to compare two representative synergy methods of cropland mapping: Geographically weighted regression (GWR) and modified fuzzy agreement scoring (MFAS). We assessed how the sample size, quality of input satellite-based maps, and various landscapes influence the accuracy of the synergy maps based on these two methods. | en |
dcterms.accessRights | Open Access | |
dcterms.bibliographicCitation | Chen, Di; Lu, Miao; Zhou, Qingbo; Xiao, Jingfeng; Ru, Yating; Wei, Yanbing; and Wu, Wenbin. 2019. Comparison of two synergy approaches for hybrid cropland mapping. Remote Sensing 11(3): 213. https://doi.org/10.3390/rs11030213 | en |
dcterms.issued | 2019-01-30 | |
dcterms.language | en | |
dcterms.license | CC-BY-4.0 | |
dcterms.publisher | MDPI AG | en |
dcterms.replaces | https://ebrary.ifpri.org/digital/collection/p15738coll5/id/6573 | en |
dcterms.subject | spatial data | en |
dcterms.subject | data fusion | en |
dcterms.subject | land-use mapping | en |
dcterms.subject | regression analysis | en |
dcterms.subject | remote sensing | en |
dcterms.subject | satellite observation | en |
dcterms.subject | cartography | en |
dcterms.subject | farmland | en |
dcterms.subject | satellite imagery | en |
dcterms.subject | cultivated land | en |
dcterms.subject | synergism | en |
dcterms.type | Journal Article |