Fine-tuned AI for tracking policy demands and studies

cg.authorship.typesCGIAR single centre
cg.contributor.affiliationBioversity International
cg.contributor.initiativeForesight
cg.creator.identifierChun Song: 0000-0003-0893-8960en
cg.creator.identifierMarie-Angélique Laporte: 0000-0002-8461-9745en
cg.number7
cg.subject.alliancebiovciatIMPACT ASSESSMENTen
cg.subject.alliancebiovciatPOLICYen
dc.contributor.authorYego, Francisen
dc.contributor.authorSong, Chunen
dc.contributor.authorLaporte, Marie-Angeliqueen
dc.date.accessioned2025-06-11T09:24:21Z
dc.date.available2025-06-11T09:24:21Z
dc.identifier.urihttps://hdl.handle.net/10568/175054
dc.titleFine-tuned AI for tracking policy demands and studiesen
dcterms.abstractThis Learning Note describes the development of an AI-based system using fine-tuned language models to support researchers in identifying and analyzing policy demands. The Alliance’s PISA team developed an annotated dataset from policy documents, labeling key elements such as drivers, outcomes, and interventions, and classifying texts as either foresight or ex-post studies. The AI model, based on RoBERTa, performed Named Entity Recognition and classification tasks, achieving high precision for socioeconomic and biophysical entities. However, it faced challenges in distinguishing study types and interpreting nuanced contexts. The Note highlights technical and non-technical challenges, and emphasizes the importance of modular AI models and interdisciplinary collaboration for effective policy analysis. Future efforts aim to enhance context reasoning and deploy user-facing tools like web portals or chatbots.en
dcterms.accessRightsOpen Access
dcterms.bibliographicCitationYego, F.; Song, C.; Laporte, M.A. (2025) Fine-tuned AI for tracking policy demands and studies. Learning Note No. 7 – Quantitative studies. 3 p.
dcterms.extent3 p.en
dcterms.isPartOfLearning Note - Quantitative studies
dcterms.issued2025-06-01en
dcterms.languageen
dcterms.licenseCC-BY-NC
dcterms.subjectmachine learningen
dcterms.subjectartificial intelligenceen
dcterms.subjectpolicy analysisen
dcterms.subjectevaluation techniquesen
dcterms.typeBrief

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AI_policydemand_LN7.pdf
Size:
275.23 KB
Format:
Adobe Portable Document Format