Using explainable machine learning techniques to unpack farm-level management x climate interactions
cg.authorship.types | CGIAR multi-centre | en |
cg.contributor.affiliation | International Center for Tropical Agriculture | en |
cg.contributor.affiliation | International Maize and Wheat Improvement Center | en |
cg.contributor.donor | CGIAR Trust Fund | en |
cg.contributor.initiative | AgriLAC Resiliente | |
cg.coverage.country | Guatemala | |
cg.coverage.iso3166-alpha2 | GT | |
cg.coverage.region | Americas | |
cg.coverage.region | Central America | |
cg.coverage.region | Latin America and the Caribbean | |
cg.creator.identifier | Julian Ramirez-Villegas: 0000-0002-8044-583X | en |
cg.creator.identifier | Lizeth Llanos-Herrera: 0000-0003-3540-7348 | en |
cg.creator.identifier | Daniel Jiménez: 0000-0003-4218-4306 | en |
cg.creator.identifier | Andrea Gardeazábal-Monsalve: 0000-0003-1529-4200 | en |
cg.subject.actionArea | Resilient Agrifood Systems | |
cg.subject.alliancebiovciat | AGRICULTURE | en |
cg.subject.alliancebiovciat | CLIMATE CHANGE | en |
cg.subject.alliancebiovciat | CLIMATE CHANGE ADAPTATION | en |
cg.subject.alliancebiovciat | FARMING SYSTEMS | en |
cg.subject.impactArea | Climate adaptation and mitigation | |
cg.subject.sdg | SDG 1 - No poverty | en |
cg.subject.sdg | SDG 2 - Zero hunger | en |
cg.subject.sdg | SDG 13 - Climate action | en |
dc.contributor.author | Ramírez Villegas, Julián Armando | en |
dc.contributor.author | Jaimes, Diana | en |
dc.contributor.author | Gonzalez Rodriguez, Carlos Eduardo | en |
dc.contributor.author | Llanos, Lizeth | en |
dc.contributor.author | Jimenez, Daniel | en |
dc.contributor.author | Gardeazabal, Andrea | en |
dc.contributor.author | Estrada, Oscar | en |
dc.contributor.author | Nuñez, Daniel | en |
dc.date.accessioned | 2023-12-01T10:39:40Z | en |
dc.date.available | 2023-12-01T10:39:40Z | en |
dc.identifier.uri | https://hdl.handle.net/10568/134910 | |
dc.title | Using explainable machine learning techniques to unpack farm-level management x climate interactions | en |
dcterms.abstract | Optimizing the management of maize production systems, including the milpa (intercropping of maize with beans and other species), is crucial for improving on-farm productivity and ultimately reducing food insecurity. This presentation showcases the results of a study aimed at identifying determinants of maize yield in Guatemala using agronomic and climate data. The study employs interpretability techniques in machine learning to explain the interactions between climatic factors and crop management in productivity. The study follows a three-step approach: (1) an Extract, Transform, Load (ETL) process of data, involving feature engineering and data standardization and cleaning; (2) identification of algorithms, metrics, and algorithmic tuning; and (3) delving into interpretability using techniques such as SHAP (SHapley Additive exPlanations), partial dependence plots (PDP), accumulated local effects (ALE) plots, and Friedman's H-statistic to evaluate interactions between features | en |
dcterms.accessRights | Open Access | |
dcterms.bibliographicCitation | Ramirez Villegas, J.; Jaimes, D.; Gonzalez, C.; Llanos, L.; Jimenez, D.; Gardeazabal, A.; Estrada, O.; Nuñez, D. (2023) Using explainable machine learning techniques to unpack farm-level management x climate interactions. Presentation prepared from impact to solutions, data, data science and machine learning for climate adaptation at Wageningen University & Research. 26-28 November 2023. 14 sl. | en |
dcterms.extent | 14 sl. | en |
dcterms.issued | 2023-11-27 | en |
dcterms.language | en | |
dcterms.license | CC-BY-4.0 | |
dcterms.subject | agronomic practices | en |
dcterms.subject | adaptación al cambio climático | en |
dcterms.subject | machine learning | en |
dcterms.subject | adaptation | en |
dcterms.subject | climate | en |
dcterms.subject | agronomy | en |
dcterms.subject | agronomía | en |
dcterms.subject | weather | en |
dcterms.subject | prácticas agronómicas | en |
dcterms.subject | tiempo | en |
dcterms.subject | estadística como ciencia | en |
dcterms.type | Presentation |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- jrv_XIA-usecase-BM...pdf
- Size:
- 4.63 MB
- Format:
- Adobe Portable Document Format
- Description: