Smallholder maize yield estimation using satellite data and machine learning in Ethiopia

cg.authorship.typesCGIAR multi-centreen
cg.contributor.affiliationInternational Food Policy Research Instituteen
cg.contributor.affiliationInternational Maize and Wheat Improvement Centeren
cg.contributor.crpMaize
cg.contributor.donorBill & Melinda Gates Foundationen
cg.contributor.donorFederal Ministry for Economic Cooperation and Development, Germanyen
cg.contributor.donorDeutsche Gesellschaft für Internationale Zusammenarbeiten
cg.contributor.donorCGIAR Trust Funden
cg.contributor.initiativeClimate Resilience
cg.coverage.countryEthiopia
cg.coverage.iso3166-alpha2ET
cg.coverage.regionEastern Africa
cg.creator.identifierLiangzhi You: 0000-0001-7930-8814
cg.creator.identifierZhe Guo: 0000-0002-5999-4009
cg.howPublishedFormally Publisheden
cg.identifier.doihttps://doi.org/10.1016/j.crope.2023.07.002en
cg.identifier.projectIFPRI - Foresight and Policy Modeling Unit
cg.identifier.projectIFPRI - Systems Transformation - Transformation Strategies
cg.identifier.publicationRankNot ranked
cg.issn2773-126Xen
cg.issue4en
cg.journalCrop and Environmenten
cg.reviewStatusPeer Reviewen
cg.subject.actionAreaSystems Transformation
cg.subject.impactAreaClimate adaptation and mitigation
cg.volume2en
dc.contributor.authorGuo, Zheen
dc.contributor.authorChamberlin, Jordanen
dc.contributor.authorYou, Liangzhien
dc.date.accessioned2023-07-12T20:44:52Zen
dc.date.available2023-07-12T20:44:52Zen
dc.identifier.urihttps://hdl.handle.net/10568/131128
dc.titleSmallholder maize yield estimation using satellite data and machine learning in Ethiopiaen
dcterms.abstractThe lack of timely, high-resolution data on agricultural production is a major challenge in developing countries where such information can guide the allocation of scarce resources for food security, agricultural investment and other objectives. While much research has suggested that remote sensing can potentially help to address these gaps, few studies have indicated the immediate potential for large-scale estimations over both time and space. In this study we described a machine learning approach to estimate smallholder maize yield in Ethiopia, using well-measured and broadly distributed ground truth data and freely available spatiotemporal covariates from remote sensing. A neural networks model outperforms other algorithms in our study. Importantly, our work indicates that a model developed and calibrated on a previous year’s data can be used to reasonably estimate maize yield in the subsequent year. Our study suggests the feasibility of developing national programs for the routine generation of broad-scale, high-resolution estimates of smallholder maize yield, including seasonal forecasts, on the basis of machine learning algorithms and well-measured ground control data and currently existing time series satellite data.en
dcterms.accessRightsOpen Access
dcterms.audienceAcademicsen
dcterms.audienceDevelopment Practitionersen
dcterms.available2023-07-07
dcterms.bibliographicCitationGuo, Zhe; Chamberlin, Jordan; and You, Liangzhi. 2023. Smallholder maize yield estimation using satellite data and machine learning in Ethiopia. Crop and Environment 2(4): 165-174. https://doi.org/10.1016/j.crope.2023.07.002en
dcterms.extentpp. 165-174en
dcterms.issued2023-12
dcterms.languageen
dcterms.licenseCC-BY-NC-ND-4.0
dcterms.publisherElsevieren
dcterms.replaceshttps://ebrary.ifpri.org/digital/collection/p15738coll5/id/8776en
dcterms.subjectagricultureen
dcterms.subjectagricultural productionen
dcterms.subjectcrop yielden
dcterms.subjectdataen
dcterms.subjectdeveloping countriesen
dcterms.subjectmachine learningen
dcterms.subjectmaizeen
dcterms.subjectremote sensingen
dcterms.subjectresourcesen
dcterms.subjectsmallholdersen
dcterms.subjectyield forecastingen
dcterms.typeJournal Article

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: