Space-time prediction of maize yields in Southern Africa

cg.authorship.typesCGIAR multi-centreen
cg.contributor.affiliationInternational Institute of Tropical Agricultureen
cg.contributor.affiliationInternational Maize and Wheat Improvement Centeren
cg.contributor.donorUnited States Agency for International Developmenten
cg.contributor.donorCGIAR Trust Funden
cg.contributor.initiativeMixed Farming Systems
cg.coverage.countryMalawi
cg.coverage.countryMozambique
cg.coverage.countryZambia
cg.coverage.countryZimbabwe
cg.coverage.iso3166-alpha2MW
cg.coverage.iso3166-alpha2MZ
cg.coverage.iso3166-alpha2ZM
cg.coverage.iso3166-alpha2ZW
cg.coverage.regionAfrica
cg.coverage.regionSouthern Africa
cg.coverage.regionEastern Africa
cg.coverage.subregionSouthern Africa
cg.creator.identifierChristian Thierfelder: 0000-0002-6306-7670en
cg.howPublishedGrey Literatureen
cg.placeIbadan, Nigeriaen
cg.subject.actionAreaResilient Agrifood Systems
cg.subject.impactAreaNutrition, health and food security
cg.subject.impactPlatformNutrition, Health and Food Security
cg.subject.sdgSDG 1 - No povertyen
cg.subject.sdgSDG 2 - Zero hungeren
cg.subject.sdgSDG 15 - Life on landen
dc.contributor.authorMuthoni, Francis K.en
dc.contributor.authorParente, Leandroen
dc.contributor.authorThierfelder, Christian L.en
dc.contributor.authorDiemen, Chris vanen
dc.contributor.authorHengl, Tomisloven
dc.date.accessioned2023-11-02T09:02:08Zen
dc.date.available2023-11-02T09:02:08Zen
dc.identifier.urihttps://hdl.handle.net/10568/132660
dc.titleSpace-time prediction of maize yields in Southern Africaen
dcterms.accessRightsOpen Access
dcterms.audienceCGIARen
dcterms.audienceDonorsen
dcterms.audienceScientistsen
dcterms.bibliographicCitationMuthoni, F., Thierfelder, C., Parente, L., van Diemen, C. and Hengl, T. 2023. Space-time prediction of maize yields in Southern Africa. Presented at the 39th International Symposium on Remote Sensing of Environment “From human needs to SDGs”, Antalya, Turkey, 24-28 April 2023. Ibadan, Nigeria: IITA.en
dcterms.issued2023-04-24en
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.publisherInternational Institute of Tropical Agricultureen
dcterms.subjectmixed farmingen
dcterms.subjectconservation agricultureen
dcterms.subjectclimate-smart agricultureen
dcterms.subjectcropsen
dcterms.subjectdataen
dcterms.subjectintensificationen
dcterms.typePresentation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Francis_Muthoni_Machine learning for predicting maize yields.pptx
Size:
4.25 MB
Format:
Microsoft Powerpoint XML
Description:
Presentation

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: