Color and Grey-Level Co-Occurrence Matrix Analysis for Predicting Sensory and Biochemical Traits in Sweet Potato and Potato

cg.authorship.typesCGIAR and developing country instituteen_US
cg.authorship.typesCGIAR and advanced research instituteen_US
cg.contributor.affiliationInternational Potato Centeren_US
cg.contributor.affiliationCentre de Coopération Internationale en Recherche Agronomique Pour le Développementen_US
cg.contributor.donorBill & Melinda Gates Foundationen_US
cg.creator.identifierJudith Nantongo: 0000-0001-7914-9139en_US
cg.creator.identifierGabriela Burgos: 0000-0002-4266-0678en_US
cg.creator.identifierMariam Nakitto: 0000-0002-4140-7216en_US
cg.creator.identifierfabrice davrieux: 0000-0002-7490-3611en_US
cg.creator.identifierReuben SSALI Tendo: 0000-0002-8143-6564en_US
cg.howPublishedFormally Publisheden_US
cg.identifier.doihttps://doi.org/10.1155/2024/1350090en_US
cg.isijournalISI Journalen_US
cg.issn2314-5765en_US
cg.issue1en_US
cg.journalInternational Journal of Food Scienceen_US
cg.reviewStatusPeer Reviewen_US
cg.subject.actionAreaGenetic Innovationen_US
cg.subject.actionAreaResilient Agrifood Systemsen_US
cg.subject.cipBREEDINGen_US
cg.subject.cipPOTATOESen_US
cg.subject.cipSWEETPOTATOESen_US
cg.subject.impactAreaNutrition, health and food securityen_US
cg.subject.sdgSDG 2 - Zero hungeren_US
cg.subject.sdgSDG 12 - Responsible consumption and productionen_US
cg.subject.sdgSDG 9 - Industry, innovation and infrastructureen_US
cg.volume2024en_US
dc.contributor.authorNantongo, J.S.en_US
dc.contributor.authorSerunkuma, E.en_US
dc.contributor.authorNakitto, M.en_US
dc.contributor.authorKitalikyawe, J.en_US
dc.contributor.authorMendes, T.en_US
dc.contributor.authorDavrieux, F.en_US
dc.contributor.authorSsali, R.T.en_US
dc.date.accessioned2024-11-06T20:50:49Zen_US
dc.date.available2024-11-06T20:50:49Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/159354en_US
dc.titleColor and Grey-Level Co-Occurrence Matrix Analysis for Predicting Sensory and Biochemical Traits in Sweet Potato and Potatoen_US
dcterms.abstractIn sweet potato and potato, sensory traits are critical for acceptance by consumers, growers, and traders, hence underpinning the success or failure of a new cultivar. A quick analytical method for the sensory traits could expedite the selection process in breeding programs. In this paper, the relationship between sensory panel and instrumental color plus texture features was evaluated. Results have shown a high correlation between the sensory panel and instrumental color in both sweet potato (up to r = 0.84) and potato (r > 0.78), implying that imaging is a potential alternative to the sensory panel for color scoring. High correlations between sensory panel aroma and flavor with instrumental color were detected (up to r = 0.66), although the validity of these correlations needs to be tested. With instrumental color and texture parameters as predictors, low to moderate accuracy was detected in the machine learning models developed to predict sensory panel traits. Overall, the performance of the eXtreme Gradient Boosting (XGboost) was comparable to the radial-based support vector machine (NL-SVM) algorithm, and these could be used for the initial selection of genotypes for aromas and flavors (r2 = 0.64–0.72) and texture attributes like moisture or mealiness (r2 > 50). Among the chemical properties screened in sweet potato, only starch showed a moderate correlation with sensory features like mealiness (r = 0.54) and instrumental color (r = 0.65). From the results, we can conclude that the instrumental scores of color are equivalent to those scored by the sensory panel, and the former could be adopted for quick analysis. Further investigations may be required to understand the association between color and aroma or flavor.en_US
dcterms.accessRightsOpen Accessen_US
dcterms.audienceAcademicsen_US
dcterms.audienceCGIARen_US
dcterms.audienceDevelopment Practitionersen_US
dcterms.audienceDonorsen_US
dcterms.audienceExtensionen_US
dcterms.audienceFarmersen_US
dcterms.audienceGeneral Publicen_US
dcterms.audienceNGOsen_US
dcterms.audiencePolicy Makersen_US
dcterms.audienceScientistsen_US
dcterms.bibliographicCitationNantongo, J.S.; Serunkuma, E.; Burgos, G.; Nakitto, M.; Kitalikyawe, J.; Mendes, T.; Davrieux, F.; Ssali, R. 2024. Color and Grey‐Level Co‐Occurrence Matrix analysis for predicting sensory and biochemical traits in sweet potato and potato. International Journal of Food Science, 2024(1). https://doi.org/10.1155/2024/1350090en_US
dcterms.issued2024-10-30en_US
dcterms.languageenen_US
dcterms.licenseCC-BY-4.0en_US
dcterms.publisherWileyen_US
dcterms.subjectbreedingen_US
dcterms.subjectdigital agricultureen_US
dcterms.subjecthigh-throughput phenotypingen_US
dcterms.subjectmachine learningen_US
dcterms.typeJournal Articleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: