Factors influencing genomic prediction accuracies of tropical maize resistance to fall armyworm and weevils

cg.authorship.typesCGIAR and advanced research instituteen
cg.contributor.affiliationMakerere Universityen
cg.contributor.affiliationBioversity International and the International Center for Tropical Agricultureen
cg.contributor.affiliationNational Crops Resources Research Institute, Ugandaen
cg.contributor.affiliationUniversity of Cape Coasten
cg.contributor.affiliationUniversity of Abomey-Calavien
cg.contributor.donorCarnegie Corporation of New Yorken
cg.contributor.donorIntegrated Genotyping Service and Supporten
cg.contributor.donorUnited States Agency for International Developmenten
cg.creator.identifierLewis Machida: 0000-0002-0012-3997en
cg.identifier.doihttps://doi.org/10.3390/plants10010029en
cg.isijournalISI Journalen
cg.issn2223-7747en
cg.issue1en
cg.journalPlantsen
cg.reviewStatusPeer Reviewen
cg.subject.alliancebiovciatAGRICULTUREen
cg.volume10en
dc.contributor.authorBadji, Arfangen
dc.contributor.authorMachida, Lewisen
dc.contributor.authorKwemoi, Daniel Bometen
dc.contributor.authorKumi, Franken
dc.contributor.authorOkii, Dennisen
dc.contributor.authorMwila, Natashaen
dc.contributor.authorAgbahoungba, Symphorienen
dc.contributor.authorIbanda, Angeleen
dc.contributor.authorBararyenya, Astereen
dc.contributor.authorNghituwamhata, Selma Ndapewaen
dc.contributor.authorOdong, Thomas L.en
dc.contributor.authorWasswa, Peteren
dc.contributor.authorOtim, Michaelen
dc.contributor.authorOchwo-Ssemakula, Mildreden
dc.contributor.authorTalwana, Herberten
dc.contributor.authorAsea, Godfreyen
dc.contributor.authorKyamanywa, Samuelen
dc.contributor.authorRubaihayo, Patricken
dc.date.accessioned2021-01-14T13:29:07Zen
dc.date.available2021-01-14T13:29:07Zen
dc.identifier.urihttps://hdl.handle.net/10568/110863
dc.titleFactors influencing genomic prediction accuracies of tropical maize resistance to fall armyworm and weevilsen
dcterms.abstractGenomic selection (GS) can accelerate variety improvement when training set (TS) size and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%, and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***) between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.en
dcterms.accessRightsOpen Access
dcterms.audienceScientistsen
dcterms.available2020-12-24en
dcterms.bibliographicCitationBadji, A.; Machida, L.; Kwemoi, D.B.; Kumi, F.; Okii, D.; Mwila, N.; Agbahoungba, S.; Ibanda, A.; Bararyenya, A.; Nghituwamhata, S.N.; Odong, T.; Wasswa, P.; Otim, M.; Ochwo-Ssemakula, M.; Talwana, H.; Asea, G.; Kyamanywa, S.; Rubaihayo, P. (2020) Factors influencing genomic prediction accuracies of tropical maize resistance to fall armyworm and weevils. Plants 10(29) 2021 22 p. ISSN: 2223-7747en
dcterms.extent22 p.en
dcterms.issued2020-12en
dcterms.languageen
dcterms.licenseCC-BY-4.0
dcterms.publisherMDPIen
dcterms.subjectmarker-assisted selectionen
dcterms.subjectmaizeen
dcterms.subjectdefence mechanismsen
dcterms.subjectselección asistida por marcadoresen
dcterms.subjectmaízen
dcterms.subjectmecanismos de defensaen
dcterms.typeJournal Article

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Factors_Badji_2020.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: