Machine Learning Approach for Prediction of Area Under Cultivation and Production for Vegetatively Propagated Crops

cg.authorship.typesCGIAR and developing country instituteen_US
cg.contributor.initiativeSeed Equalen_US
cg.creator.identifierKwame Ogero: 0000-0002-5141-6781en_US
cg.creator.identifierNAMANDA SAM: 0000-0001-7822-0626en_US
cg.identifier.doihttps://doi.org/10.4160/cip.2025.01.020en_US
cg.subject.actionAreaResilient Agrifood Systemsen_US
cg.subject.cipCROP AND SYSTEMS SCIENCES CSSen_US
cg.subject.cipSEED SYSTEMSen_US
cg.subject.cipFOOD SECURITYen_US
cg.subject.cipBIGDATAen_US
cg.subject.cipSWEETPOTATOESen_US
cg.subject.impactAreaNutrition, health and food securityen_US
cg.subject.impactAreaClimate adaptation and mitigationen_US
cg.subject.sdgSDG 2 - Zero hungeren_US
cg.subject.sdgSDG 9 - Industry, innovation and infrastructureen_US
cg.subject.sdgSDG 12 - Responsible consumption and productionen_US
cg.subject.sdgSDG 13 - Climate actionen_US
dc.contributor.authorAhishakiye, E.en_US
dc.contributor.authorOgero, K.en_US
dc.contributor.authorNamada, S.en_US
dc.contributor.authorRajendran, S.en_US
dc.date.accessioned2025-02-01T02:34:44Zen_US
dc.date.available2025-02-01T02:34:44Zen_US
dc.identifier.urihttps://hdl.handle.net/10568/172714en_US
dc.titleMachine Learning Approach for Prediction of Area Under Cultivation and Production for Vegetatively Propagated Cropsen_US
dcterms.abstractVegetatively propagated crops (VPCs) such as cassava, sweet potatoes, and bananas, are a key component in ensuring food security for the low- and middle-income countries (LMICs). In agricultural planning and seed system management, it is essential to accurately predict the area under cultivation, production volumes, and yield rates of these crops. Traditional forecasting methods have fallen short in capturing the complexity of VPC production, as there are nonlinear relationships and dynamic environmental factors at play. This paper overcomes these shortcomings by using machine learning models to enhance the forecasting accuracy using data from the Seed Requirement Estimation (SRE) tool. We applied Random Forest, AdaBoost, and a Stacked Ensemble Model to forecast the area under cultivation and production volume in tons. After hyperparameter tuning, the Stacked Model performed better, yielding R² values of 0.8260 for area prediction and 0.7883 for production forecasting, outperforming the individual models. The results reflect the potential of the ensemble learning model to improve the accuracy of agricultural forecasts. The study emphasizes the role that advanced predictive models can play in enhancing agricultural policy decisions based on data, optimizing seed distribution, and ensuring food security in VPC-dependent regions.en_US
dcterms.accessRightsOpen Accessen_US
dcterms.audienceAcademicsen_US
dcterms.audienceCGIARen_US
dcterms.audienceDevelopment Practitionersen_US
dcterms.audienceDonorsen_US
dcterms.audienceExtensionen_US
dcterms.audienceFarmersen_US
dcterms.audienceGeneral Publicen_US
dcterms.audienceNGOsen_US
dcterms.audiencePolicy Makersen_US
dcterms.audienceScientistsen_US
dcterms.bibliographicCitationAhishakiye, E.; Ogero, K.; Namada, S.; Rajendran, S. 2024. Machine Learning Approach for Prediction of Area Under Cultivation and Production for Vegetatively Propagated Crops. International Potato Center. 25 p. DOI: 10.4160/cip.2025.01.020en_US
dcterms.extent25 p.en_US
dcterms.issued2024-12en_US
dcterms.languageenen_US
dcterms.licenseCC-BY-4.0en_US
dcterms.subjectmachine learningen_US
dcterms.subjectcrop yielden_US
dcterms.subjectseed systemsen_US
dcterms.subjectfood securityen_US
dcterms.typeWorking Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cip.2025.01.020.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
Working Paper

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: